1 /*
2  * Hunt - A refined core library for D programming language.
3  *
4  * Copyright (C) 2018-2019 HuntLabs
5  *
6  * Website: https://www.huntlabs.net/
7  *
8  * Licensed under the Apache-2.0 License.
9  *
10  */
11 
12 module hunt.String;
13 
14 import hunt.Nullable;
15 
16 /**
17  * The {@code String} class represents character strings. All
18  * string literals in Java programs, such as {@code "abc"}, are
19  * implemented as instances of this class.
20  * <p>
21  * Strings are constant; their values cannot be changed after they
22  * are created. String buffers support mutable strings.
23  * Because String objects are immutable they can be shared. For example:
24  * <blockquote><pre>
25  *     String str = "abc";
26  * </pre></blockquote><p>
27  * is equivalent to:
28  * <blockquote><pre>
29  *     char data[] = {'a', 'b', 'c'};
30  *     String str = new String(data);
31  * </pre></blockquote><p>
32  * Here are some more examples of how strings can be used:
33  * <blockquote><pre>
34  *     System.out.println("abc");
35  *     String cde = "cde";
36  *     System.out.println("abc" + cde);
37  *     String c = "abc".substring(2,3);
38  *     String d = cde.substring(1, 2);
39  * </pre></blockquote>
40  * <p>
41  * The class {@code String} includes methods for examining
42  * individual characters of the sequence, for comparing strings, for
43  * searching strings, for extracting substrings, and for creating a
44  * copy of a string with all characters translated to uppercase or to
45  * lowercase. Case mapping is based on the Unicode Standard version
46  * specified by the {@link java.lang.Character Character} class.
47  * <p>
48  * The Java language provides special support for the string
49  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
50  * other objects to strings. For additional information on string
51  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
52  *
53  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
54  * or method in this class will cause a {@link NullPointerException} to be
55  * thrown.
56  *
57  * <p>A {@code String} represents a string in the UTF-16 format
58  * in which <em>supplementary characters</em> are represented by <em>surrogate
59  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
60  * Character Representations</a> in the {@code Character} class for
61  * more information).
62  * Index values refer to {@code char} code units, so a supplementary
63  * character uses two positions in a {@code String}.
64  * <p>The {@code String} class provides methods for dealing with
65  * Unicode code points (i.e., characters), in addition to those for
66  * dealing with Unicode code units (i.e., {@code char} values).
67  *
68  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
69  * into account.  The {@link java.text.Collator} class provides methods for
70  * finer-grain, locale-sensitive String comparison.
71  *
72  * @implNote The implementation of the string concatenation operator is left to
73  * the discretion of a Java compiler, as long as the compiler ultimately conforms
74  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
75  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
76  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
77  * implementation of string conversion is typically through the method {@code toString},
78  * defined by {@code Object} and inherited by all classes in Java.
79  *
80  * @author  Lee Boynton
81  * @author  Arthur van Hoff
82  * @author  Martin Buchholz
83  * @author  Ulf Zibis
84  * @see     java.lang.Object#toString()
85  * @see     java.lang.StringBuffer
86  * @see     java.lang.StringBuilder
87  * @see     java.nio.charset.Charset
88  * @since   1.0
89  * @jls     15.18.1 String Concatenation Operator +
90  */
91 
92 final class String : Nullable!string {
93 
94     this() {
95         super(null);
96     }
97 
98     this(string value) {
99         super(value);
100     }
101 
102 /++
103      /**
104      * The value is used for character storage.
105      *
106      * @implNote This field is trusted by the VM, and is a subject to
107      * constant folding if String instance is constant. Overwriting this
108      * field after construction will cause problems.
109      *
110      * Additionally, it is marked with {@link Stable} to trust the contents
111      * of the array. No other facility in JDK provides this functionality (yet).
112      * {@link Stable} is safe here, because value is never null.
113      */
114     @Stable
115     private final byte[] value;
116 
117     /**
118      * The identifier of the encoding used to encode the bytes in
119      * {@code value}. The supported values in this implementation are
120      *
121      * LATIN1
122      * UTF16
123      *
124      * @implNote This field is trusted by the VM, and is a subject to
125      * constant folding if String instance is constant. Overwriting this
126      * field after construction will cause problems.
127      */
128     private final byte coder;
129 
130     /** Cache the hash code for the string */
131     private int hash; // Default to 0
132 
133     /** use serialVersionUID from JDK 1.0.2 for interoperability */
134     private static final long serialVersionUID = -6849794470754667710L;
135 
136     /**
137      * If String compaction is disabled, the bytes in {@code value} are
138      * always encoded in UTF16.
139      *
140      * For methods with several possible implementation paths, when String
141      * compaction is disabled, only one code path is taken.
142      *
143      * The instance field value is generally opaque to optimizing JIT
144      * compilers. Therefore, in performance-sensitive place, an explicit
145      * check of the static boolean {@code COMPACT_STRINGS} is done first
146      * before checking the {@code coder} field since the static boolean
147      * {@code COMPACT_STRINGS} would be constant folded away by an
148      * optimizing JIT compiler. The idioms for these cases are as follows.
149      *
150      * For code such as:
151      *
152      *    if (coder == LATIN1) { ... }
153      *
154      * can be written more optimally as
155      *
156      *    if (coder() == LATIN1) { ... }
157      *
158      * or:
159      *
160      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
161      *
162      * An optimizing JIT compiler can fold the above conditional as:
163      *
164      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
165      *    COMPACT_STRINGS == false => if (false)           { ... }
166      *
167      * @implNote
168      * The actual value for this field is injected by JVM. The static
169      * initialization block is used to set the value here to communicate
170      * that this static final field is not statically foldable, and to
171      * avoid any possible circular dependency during vm initialization.
172      */
173     static final boolean COMPACT_STRINGS;
174 
175     static {
176         COMPACT_STRINGS = true;
177     }
178 
179     /**
180      * Class String is special cased within the Serialization Stream Protocol.
181      *
182      * A String instance is written into an ObjectOutputStream according to
183      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
184      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
185      */
186     private static final ObjectStreamField[] serialPersistentFields =
187         new ObjectStreamField[0];
188 
189     /**
190      * Initializes a newly created {@code String} object so that it represents
191      * an empty character sequence.  Note that use of this constructor is
192      * unnecessary since Strings are immutable.
193      */
194     public String() {
195         this.value = "".value;
196         this.coder = "".coder;
197     }
198 
199     /**
200      * Initializes a newly created {@code String} object so that it represents
201      * the same sequence of characters as the argument; in other words, the
202      * newly created string is a copy of the argument string. Unless an
203      * explicit copy of {@code original} is needed, use of this constructor is
204      * unnecessary since Strings are immutable.
205      *
206      * @param  original
207      *         A {@code String}
208      */
209     @HotSpotIntrinsicCandidate
210     public String(String original) {
211         this.value = original.value;
212         this.coder = original.coder;
213         this.hash = original.hash;
214     }
215 
216     /**
217      * Allocates a new {@code String} so that it represents the sequence of
218      * characters currently contained in the character array argument. The
219      * contents of the character array are copied; subsequent modification of
220      * the character array does not affect the newly created string.
221      *
222      * @param  value
223      *         The initial value of the string
224      */
225     public String(char value[]) {
226         this(value, 0, value.length, null);
227     }
228 
229     /**
230      * Allocates a new {@code String} that contains characters from a subarray
231      * of the character array argument. The {@code offset} argument is the
232      * index of the first character of the subarray and the {@code count}
233      * argument specifies the length of the subarray. The contents of the
234      * subarray are copied; subsequent modification of the character array does
235      * not affect the newly created string.
236      *
237      * @param  value
238      *         Array that is the source of characters
239      *
240      * @param  offset
241      *         The initial offset
242      *
243      * @param  count
244      *         The length
245      *
246      * @throws  IndexOutOfBoundsException
247      *          If {@code offset} is negative, {@code count} is negative, or
248      *          {@code offset} is greater than {@code value.length - count}
249      */
250     public String(char value[], int offset, int count) {
251         this(value, offset, count, rangeCheck(value, offset, count));
252     }
253 
254     private static Void rangeCheck(char[] value, int offset, int count) {
255         checkBoundsOffCount(offset, count, value.length);
256         return null;
257     }
258 
259     /**
260      * Allocates a new {@code String} that contains characters from a subarray
261      * of the <a href="Character.html#unicode">Unicode code point</a> array
262      * argument.  The {@code offset} argument is the index of the first code
263      * point of the subarray and the {@code count} argument specifies the
264      * length of the subarray.  The contents of the subarray are converted to
265      * {@code char}s; subsequent modification of the {@code int} array does not
266      * affect the newly created string.
267      *
268      * @param  codePoints
269      *         Array that is the source of Unicode code points
270      *
271      * @param  offset
272      *         The initial offset
273      *
274      * @param  count
275      *         The length
276      *
277      * @throws  IllegalArgumentException
278      *          If any invalid Unicode code point is found in {@code
279      *          codePoints}
280      *
281      * @throws  IndexOutOfBoundsException
282      *          If {@code offset} is negative, {@code count} is negative, or
283      *          {@code offset} is greater than {@code codePoints.length - count}
284      *
285      * @since  1.5
286      */
287     public String(int[] codePoints, int offset, int count) {
288         checkBoundsOffCount(offset, count, codePoints.length);
289         if (count == 0) {
290             this.value = "".value;
291             this.coder = "".coder;
292             return;
293         }
294         if (COMPACT_STRINGS) {
295             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
296             if (val != null) {
297                 this.coder = LATIN1;
298                 this.value = val;
299                 return;
300             }
301         }
302         this.coder = UTF16;
303         this.value = StringUTF16.toBytes(codePoints, offset, count);
304     }
305 
306     /**
307      * Allocates a new {@code String} constructed from a subarray of an array
308      * of 8-bit integer values.
309      *
310      * <p> The {@code offset} argument is the index of the first byte of the
311      * subarray, and the {@code count} argument specifies the length of the
312      * subarray.
313      *
314      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
315      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
316      *
317      * @deprecated This method does not properly convert bytes into characters.
318      * As of JDK&nbsp;1.1, the preferred way to do this is via the
319      * {@code String} constructors that take a {@link
320      * java.nio.charset.Charset}, charset name, or that use the platform's
321      * default charset.
322      *
323      * @param  ascii
324      *         The bytes to be converted to characters
325      *
326      * @param  hibyte
327      *         The top 8 bits of each 16-bit Unicode code unit
328      *
329      * @param  offset
330      *         The initial offset
331      * @param  count
332      *         The length
333      *
334      * @throws  IndexOutOfBoundsException
335      *          If {@code offset} is negative, {@code count} is negative, or
336      *          {@code offset} is greater than {@code ascii.length - count}
337      *
338      * @see  #String(byte[], int)
339      * @see  #String(byte[], int, int, java.lang.String)
340      * @see  #String(byte[], int, int, java.nio.charset.Charset)
341      * @see  #String(byte[], int, int)
342      * @see  #String(byte[], java.lang.String)
343      * @see  #String(byte[], java.nio.charset.Charset)
344      * @see  #String(byte[])
345      */
346     @Deprecated(since="1.1")
347     public String(byte ascii[], int hibyte, int offset, int count) {
348         checkBoundsOffCount(offset, count, ascii.length);
349         if (count == 0) {
350             this.value = "".value;
351             this.coder = "".coder;
352             return;
353         }
354         if (COMPACT_STRINGS && (byte)hibyte == 0) {
355             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
356             this.coder = LATIN1;
357         } else {
358             hibyte <<= 8;
359             byte[] val = StringUTF16.newBytesFor(count);
360             for (int i = 0; i < count; i++) {
361                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
362             }
363             this.value = val;
364             this.coder = UTF16;
365         }
366     }
367 
368     /**
369      * Allocates a new {@code String} containing characters constructed from
370      * an array of 8-bit integer values. Each character <i>c</i> in the
371      * resulting string is constructed from the corresponding component
372      * <i>b</i> in the byte array such that:
373      *
374      * <blockquote><pre>
375      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
376      *                         | (<b><i>b</i></b> &amp; 0xff))
377      * </pre></blockquote>
378      *
379      * @deprecated  This method does not properly convert bytes into
380      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
381      * {@code String} constructors that take a {@link
382      * java.nio.charset.Charset}, charset name, or that use the platform's
383      * default charset.
384      *
385      * @param  ascii
386      *         The bytes to be converted to characters
387      *
388      * @param  hibyte
389      *         The top 8 bits of each 16-bit Unicode code unit
390      *
391      * @see  #String(byte[], int, int, java.lang.String)
392      * @see  #String(byte[], int, int, java.nio.charset.Charset)
393      * @see  #String(byte[], int, int)
394      * @see  #String(byte[], java.lang.String)
395      * @see  #String(byte[], java.nio.charset.Charset)
396      * @see  #String(byte[])
397      */
398     @Deprecated(since="1.1")
399     public String(byte ascii[], int hibyte) {
400         this(ascii, hibyte, 0, ascii.length);
401     }
402 
403     /**
404      * Constructs a new {@code String} by decoding the specified subarray of
405      * bytes using the specified charset.  The length of the new {@code String}
406      * is a function of the charset, and hence may not be equal to the length
407      * of the subarray.
408      *
409      * <p> The behavior of this constructor when the given bytes are not valid
410      * in the given charset is unspecified.  The {@link
411      * java.nio.charset.CharsetDecoder} class should be used when more control
412      * over the decoding process is required.
413      *
414      * @param  bytes
415      *         The bytes to be decoded into characters
416      *
417      * @param  offset
418      *         The index of the first byte to decode
419      *
420      * @param  length
421      *         The number of bytes to decode
422 
423      * @param  charsetName
424      *         The name of a supported {@linkplain java.nio.charset.Charset
425      *         charset}
426      *
427      * @throws  UnsupportedEncodingException
428      *          If the named charset is not supported
429      *
430      * @throws  IndexOutOfBoundsException
431      *          If {@code offset} is negative, {@code length} is negative, or
432      *          {@code offset} is greater than {@code bytes.length - length}
433      *
434      * @since  1.1
435      */
436     public String(byte bytes[], int offset, int length, String charsetName)
437             throws UnsupportedEncodingException {
438         if (charsetName == null)
439             throw new NullPointerException("charsetName");
440         checkBoundsOffCount(offset, length, bytes.length);
441         StringCoding.Result ret =
442             StringCoding.decode(charsetName, bytes, offset, length);
443         this.value = ret.value;
444         this.coder = ret.coder;
445     }
446 
447     /**
448      * Constructs a new {@code String} by decoding the specified subarray of
449      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
450      * The length of the new {@code String} is a function of the charset, and
451      * hence may not be equal to the length of the subarray.
452      *
453      * <p> This method always replaces malformed-input and unmappable-character
454      * sequences with this charset's default replacement string.  The {@link
455      * java.nio.charset.CharsetDecoder} class should be used when more control
456      * over the decoding process is required.
457      *
458      * @param  bytes
459      *         The bytes to be decoded into characters
460      *
461      * @param  offset
462      *         The index of the first byte to decode
463      *
464      * @param  length
465      *         The number of bytes to decode
466      *
467      * @param  charset
468      *         The {@linkplain java.nio.charset.Charset charset} to be used to
469      *         decode the {@code bytes}
470      *
471      * @throws  IndexOutOfBoundsException
472      *          If {@code offset} is negative, {@code length} is negative, or
473      *          {@code offset} is greater than {@code bytes.length - length}
474      *
475      * @since  1.6
476      */
477     public String(byte bytes[], int offset, int length, Charset charset) {
478         if (charset == null)
479             throw new NullPointerException("charset");
480         checkBoundsOffCount(offset, length, bytes.length);
481         StringCoding.Result ret =
482             StringCoding.decode(charset, bytes, offset, length);
483         this.value = ret.value;
484         this.coder = ret.coder;
485     }
486 
487     /**
488      * Constructs a new {@code String} by decoding the specified array of bytes
489      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
490      * length of the new {@code String} is a function of the charset, and hence
491      * may not be equal to the length of the byte array.
492      *
493      * <p> The behavior of this constructor when the given bytes are not valid
494      * in the given charset is unspecified.  The {@link
495      * java.nio.charset.CharsetDecoder} class should be used when more control
496      * over the decoding process is required.
497      *
498      * @param  bytes
499      *         The bytes to be decoded into characters
500      *
501      * @param  charsetName
502      *         The name of a supported {@linkplain java.nio.charset.Charset
503      *         charset}
504      *
505      * @throws  UnsupportedEncodingException
506      *          If the named charset is not supported
507      *
508      * @since  1.1
509      */
510     public String(byte bytes[], String charsetName)
511             throws UnsupportedEncodingException {
512         this(bytes, 0, bytes.length, charsetName);
513     }
514 
515     /**
516      * Constructs a new {@code String} by decoding the specified array of
517      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
518      * The length of the new {@code String} is a function of the charset, and
519      * hence may not be equal to the length of the byte array.
520      *
521      * <p> This method always replaces malformed-input and unmappable-character
522      * sequences with this charset's default replacement string.  The {@link
523      * java.nio.charset.CharsetDecoder} class should be used when more control
524      * over the decoding process is required.
525      *
526      * @param  bytes
527      *         The bytes to be decoded into characters
528      *
529      * @param  charset
530      *         The {@linkplain java.nio.charset.Charset charset} to be used to
531      *         decode the {@code bytes}
532      *
533      * @since  1.6
534      */
535     public String(byte bytes[], Charset charset) {
536         this(bytes, 0, bytes.length, charset);
537     }
538 
539     /**
540      * Constructs a new {@code String} by decoding the specified subarray of
541      * bytes using the platform's default charset.  The length of the new
542      * {@code String} is a function of the charset, and hence may not be equal
543      * to the length of the subarray.
544      *
545      * <p> The behavior of this constructor when the given bytes are not valid
546      * in the default charset is unspecified.  The {@link
547      * java.nio.charset.CharsetDecoder} class should be used when more control
548      * over the decoding process is required.
549      *
550      * @param  bytes
551      *         The bytes to be decoded into characters
552      *
553      * @param  offset
554      *         The index of the first byte to decode
555      *
556      * @param  length
557      *         The number of bytes to decode
558      *
559      * @throws  IndexOutOfBoundsException
560      *          If {@code offset} is negative, {@code length} is negative, or
561      *          {@code offset} is greater than {@code bytes.length - length}
562      *
563      * @since  1.1
564      */
565     public String(byte bytes[], int offset, int length) {
566         checkBoundsOffCount(offset, length, bytes.length);
567         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
568         this.value = ret.value;
569         this.coder = ret.coder;
570     }
571 
572     /**
573      * Constructs a new {@code String} by decoding the specified array of bytes
574      * using the platform's default charset.  The length of the new {@code
575      * String} is a function of the charset, and hence may not be equal to the
576      * length of the byte array.
577      *
578      * <p> The behavior of this constructor when the given bytes are not valid
579      * in the default charset is unspecified.  The {@link
580      * java.nio.charset.CharsetDecoder} class should be used when more control
581      * over the decoding process is required.
582      *
583      * @param  bytes
584      *         The bytes to be decoded into characters
585      *
586      * @since  1.1
587      */
588     public String(byte[] bytes) {
589         this(bytes, 0, bytes.length);
590     }
591 
592     /**
593      * Allocates a new string that contains the sequence of characters
594      * currently contained in the string buffer argument. The contents of the
595      * string buffer are copied; subsequent modification of the string buffer
596      * does not affect the newly created string.
597      *
598      * @param  buffer
599      *         A {@code StringBuffer}
600      */
601     public String(StringBuffer buffer) {
602         this(buffer.toString());
603     }
604 
605     /**
606      * Allocates a new string that contains the sequence of characters
607      * currently contained in the string builder argument. The contents of the
608      * string builder are copied; subsequent modification of the string builder
609      * does not affect the newly created string.
610      *
611      * <p> This constructor is provided to ease migration to {@code
612      * StringBuilder}. Obtaining a string from a string builder via the {@code
613      * toString} method is likely to run faster and is generally preferred.
614      *
615      * @param   builder
616      *          A {@code StringBuilder}
617      *
618      * @since  1.5
619      */
620     public String(StringBuilder builder) {
621         this(builder, null);
622     }
623 
624     /**
625      * Returns the length of this string.
626      * The length is equal to the number of <a href="Character.html#unicode">Unicode
627      * code units</a> in the string.
628      *
629      * @return  the length of the sequence of characters represented by this
630      *          object.
631      */
632     public int length() {
633         return value.length >> coder();
634     }
635 
636     /**
637      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
638      *
639      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
640      * {@code false}
641      *
642      * @since 1.6
643      */
644     public boolean isEmpty() {
645         return value.length == 0;
646     }
647 
648     /**
649      * Returns the {@code char} value at the
650      * specified index. An index ranges from {@code 0} to
651      * {@code length() - 1}. The first {@code char} value of the sequence
652      * is at index {@code 0}, the next at index {@code 1},
653      * and so on, as for array indexing.
654      *
655      * <p>If the {@code char} value specified by the index is a
656      * <a href="Character.html#unicode">surrogate</a>, the surrogate
657      * value is returned.
658      *
659      * @param      index   the index of the {@code char} value.
660      * @return     the {@code char} value at the specified index of this string.
661      *             The first {@code char} value is at index {@code 0}.
662      * @exception  IndexOutOfBoundsException  if the {@code index}
663      *             argument is negative or not less than the length of this
664      *             string.
665      */
666     public char charAt(int index) {
667         if (isLatin1()) {
668             return StringLatin1.charAt(value, index);
669         } else {
670             return StringUTF16.charAt(value, index);
671         }
672     }
673 
674     /**
675      * Returns the character (Unicode code point) at the specified
676      * index. The index refers to {@code char} values
677      * (Unicode code units) and ranges from {@code 0} to
678      * {@link #length()}{@code  - 1}.
679      *
680      * <p> If the {@code char} value specified at the given index
681      * is in the high-surrogate range, the following index is less
682      * than the length of this {@code String}, and the
683      * {@code char} value at the following index is in the
684      * low-surrogate range, then the supplementary code point
685      * corresponding to this surrogate pair is returned. Otherwise,
686      * the {@code char} value at the given index is returned.
687      *
688      * @param      index the index to the {@code char} values
689      * @return     the code point value of the character at the
690      *             {@code index}
691      * @exception  IndexOutOfBoundsException  if the {@code index}
692      *             argument is negative or not less than the length of this
693      *             string.
694      * @since      1.5
695      */
696     public int codePointAt(int index) {
697         if (isLatin1()) {
698             checkIndex(index, value.length);
699             return value[index] & 0xff;
700         }
701         int length = value.length >> 1;
702         checkIndex(index, length);
703         return StringUTF16.codePointAt(value, index, length);
704     }
705 
706     /**
707      * Returns the character (Unicode code point) before the specified
708      * index. The index refers to {@code char} values
709      * (Unicode code units) and ranges from {@code 1} to {@link
710      * CharSequence#length() length}.
711      *
712      * <p> If the {@code char} value at {@code (index - 1)}
713      * is in the low-surrogate range, {@code (index - 2)} is not
714      * negative, and the {@code char} value at {@code (index -
715      * 2)} is in the high-surrogate range, then the
716      * supplementary code point value of the surrogate pair is
717      * returned. If the {@code char} value at {@code index -
718      * 1} is an unpaired low-surrogate or a high-surrogate, the
719      * surrogate value is returned.
720      *
721      * @param     index the index following the code point that should be returned
722      * @return    the Unicode code point value before the given index.
723      * @exception IndexOutOfBoundsException if the {@code index}
724      *            argument is less than 1 or greater than the length
725      *            of this string.
726      * @since     1.5
727      */
728     public int codePointBefore(int index) {
729         int i = index - 1;
730         if (i < 0 || i >= length()) {
731             throw new StringIndexOutOfBoundsException(index);
732         }
733         if (isLatin1()) {
734             return (value[i] & 0xff);
735         }
736         return StringUTF16.codePointBefore(value, index);
737     }
738 
739     /**
740      * Returns the number of Unicode code points in the specified text
741      * range of this {@code String}. The text range begins at the
742      * specified {@code beginIndex} and extends to the
743      * {@code char} at index {@code endIndex - 1}. Thus the
744      * length (in {@code char}s) of the text range is
745      * {@code endIndex-beginIndex}. Unpaired surrogates within
746      * the text range count as one code point each.
747      *
748      * @param beginIndex the index to the first {@code char} of
749      * the text range.
750      * @param endIndex the index after the last {@code char} of
751      * the text range.
752      * @return the number of Unicode code points in the specified text
753      * range
754      * @exception IndexOutOfBoundsException if the
755      * {@code beginIndex} is negative, or {@code endIndex}
756      * is larger than the length of this {@code String}, or
757      * {@code beginIndex} is larger than {@code endIndex}.
758      * @since  1.5
759      */
760     public int codePointCount(int beginIndex, int endIndex) {
761         if (beginIndex < 0 || beginIndex > endIndex ||
762             endIndex > length()) {
763             throw new IndexOutOfBoundsException();
764         }
765         if (isLatin1()) {
766             return endIndex - beginIndex;
767         }
768         return StringUTF16.codePointCount(value, beginIndex, endIndex);
769     }
770 
771     /**
772      * Returns the index within this {@code String} that is
773      * offset from the given {@code index} by
774      * {@code codePointOffset} code points. Unpaired surrogates
775      * within the text range given by {@code index} and
776      * {@code codePointOffset} count as one code point each.
777      *
778      * @param index the index to be offset
779      * @param codePointOffset the offset in code points
780      * @return the index within this {@code String}
781      * @exception IndexOutOfBoundsException if {@code index}
782      *   is negative or larger then the length of this
783      *   {@code String}, or if {@code codePointOffset} is positive
784      *   and the substring starting with {@code index} has fewer
785      *   than {@code codePointOffset} code points,
786      *   or if {@code codePointOffset} is negative and the substring
787      *   before {@code index} has fewer than the absolute value
788      *   of {@code codePointOffset} code points.
789      * @since 1.5
790      */
791     public int offsetByCodePoints(int index, int codePointOffset) {
792         if (index < 0 || index > length()) {
793             throw new IndexOutOfBoundsException();
794         }
795         return Character.offsetByCodePoints(this, index, codePointOffset);
796     }
797 
798     /**
799      * Copies characters from this string into the destination character
800      * array.
801      * <p>
802      * The first character to be copied is at index {@code srcBegin};
803      * the last character to be copied is at index {@code srcEnd-1}
804      * (thus the total number of characters to be copied is
805      * {@code srcEnd-srcBegin}). The characters are copied into the
806      * subarray of {@code dst} starting at index {@code dstBegin}
807      * and ending at index:
808      * <blockquote><pre>
809      *     dstBegin + (srcEnd-srcBegin) - 1
810      * </pre></blockquote>
811      *
812      * @param      srcBegin   index of the first character in the string
813      *                        to copy.
814      * @param      srcEnd     index after the last character in the string
815      *                        to copy.
816      * @param      dst        the destination array.
817      * @param      dstBegin   the start offset in the destination array.
818      * @exception IndexOutOfBoundsException If any of the following
819      *            is true:
820      *            <ul><li>{@code srcBegin} is negative.
821      *            <li>{@code srcBegin} is greater than {@code srcEnd}
822      *            <li>{@code srcEnd} is greater than the length of this
823      *                string
824      *            <li>{@code dstBegin} is negative
825      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
826      *                {@code dst.length}</ul>
827      */
828     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
829         checkBoundsBeginEnd(srcBegin, srcEnd, length());
830         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
831         if (isLatin1()) {
832             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
833         } else {
834             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
835         }
836     }
837 
838     /**
839      * Copies characters from this string into the destination byte array. Each
840      * byte receives the 8 low-order bits of the corresponding character. The
841      * eight high-order bits of each character are not copied and do not
842      * participate in the transfer in any way.
843      *
844      * <p> The first character to be copied is at index {@code srcBegin}; the
845      * last character to be copied is at index {@code srcEnd-1}.  The total
846      * number of characters to be copied is {@code srcEnd-srcBegin}. The
847      * characters, converted to bytes, are copied into the subarray of {@code
848      * dst} starting at index {@code dstBegin} and ending at index:
849      *
850      * <blockquote><pre>
851      *     dstBegin + (srcEnd-srcBegin) - 1
852      * </pre></blockquote>
853      *
854      * @deprecated  This method does not properly convert characters into
855      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
856      * {@link #getBytes()} method, which uses the platform's default charset.
857      *
858      * @param  srcBegin
859      *         Index of the first character in the string to copy
860      *
861      * @param  srcEnd
862      *         Index after the last character in the string to copy
863      *
864      * @param  dst
865      *         The destination array
866      *
867      * @param  dstBegin
868      *         The start offset in the destination array
869      *
870      * @throws  IndexOutOfBoundsException
871      *          If any of the following is true:
872      *          <ul>
873      *            <li> {@code srcBegin} is negative
874      *            <li> {@code srcBegin} is greater than {@code srcEnd}
875      *            <li> {@code srcEnd} is greater than the length of this String
876      *            <li> {@code dstBegin} is negative
877      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
878      *                 dst.length}
879      *          </ul>
880      */
881     @Deprecated(since="1.1")
882     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
883         checkBoundsBeginEnd(srcBegin, srcEnd, length());
884         Objects.requireNonNull(dst);
885         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
886         if (isLatin1()) {
887             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
888         } else {
889             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
890         }
891     }
892 
893     /**
894      * Encodes this {@code String} into a sequence of bytes using the named
895      * charset, storing the result into a new byte array.
896      *
897      * <p> The behavior of this method when this string cannot be encoded in
898      * the given charset is unspecified.  The {@link
899      * java.nio.charset.CharsetEncoder} class should be used when more control
900      * over the encoding process is required.
901      *
902      * @param  charsetName
903      *         The name of a supported {@linkplain java.nio.charset.Charset
904      *         charset}
905      *
906      * @return  The resultant byte array
907      *
908      * @throws  UnsupportedEncodingException
909      *          If the named charset is not supported
910      *
911      * @since  1.1
912      */
913     public byte[] getBytes(String charsetName)
914             throws UnsupportedEncodingException {
915         if (charsetName == null) throw new NullPointerException();
916         return StringCoding.encode(charsetName, coder(), value);
917     }
918 
919     /**
920      * Encodes this {@code String} into a sequence of bytes using the given
921      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
922      * new byte array.
923      *
924      * <p> This method always replaces malformed-input and unmappable-character
925      * sequences with this charset's default replacement byte array.  The
926      * {@link java.nio.charset.CharsetEncoder} class should be used when more
927      * control over the encoding process is required.
928      *
929      * @param  charset
930      *         The {@linkplain java.nio.charset.Charset} to be used to encode
931      *         the {@code String}
932      *
933      * @return  The resultant byte array
934      *
935      * @since  1.6
936      */
937     public byte[] getBytes(Charset charset) {
938         if (charset == null) throw new NullPointerException();
939         return StringCoding.encode(charset, coder(), value);
940      }
941 
942     /**
943      * Encodes this {@code String} into a sequence of bytes using the
944      * platform's default charset, storing the result into a new byte array.
945      *
946      * <p> The behavior of this method when this string cannot be encoded in
947      * the default charset is unspecified.  The {@link
948      * java.nio.charset.CharsetEncoder} class should be used when more control
949      * over the encoding process is required.
950      *
951      * @return  The resultant byte array
952      *
953      * @since      1.1
954      */
955     public byte[] getBytes() {
956         return StringCoding.encode(coder(), value);
957     }
958 
959     /**
960      * Compares this string to the specified object.  The result is {@code
961      * true} if and only if the argument is not {@code null} and is a {@code
962      * String} object that represents the same sequence of characters as this
963      * object.
964      *
965      * <p>For finer-grained String comparison, refer to
966      * {@link java.text.Collator}.
967      *
968      * @param  anObject
969      *         The object to compare this {@code String} against
970      *
971      * @return  {@code true} if the given object represents a {@code String}
972      *          equivalent to this string, {@code false} otherwise
973      *
974      * @see  #compareTo(String)
975      * @see  #equalsIgnoreCase(String)
976      */
977     public boolean equals(Object anObject) {
978         if (this == anObject) {
979             return true;
980         }
981         if (anObject instanceof String) {
982             String aString = (String)anObject;
983             if (coder() == aString.coder()) {
984                 return isLatin1() ? StringLatin1.equals(value, aString.value)
985                                   : StringUTF16.equals(value, aString.value);
986             }
987         }
988         return false;
989     }
990 
991     /**
992      * Compares this string to the specified {@code StringBuffer}.  The result
993      * is {@code true} if and only if this {@code String} represents the same
994      * sequence of characters as the specified {@code StringBuffer}. This method
995      * synchronizes on the {@code StringBuffer}.
996      *
997      * <p>For finer-grained String comparison, refer to
998      * {@link java.text.Collator}.
999      *
1000      * @param  sb
1001      *         The {@code StringBuffer} to compare this {@code String} against
1002      *
1003      * @return  {@code true} if this {@code String} represents the same
1004      *          sequence of characters as the specified {@code StringBuffer},
1005      *          {@code false} otherwise
1006      *
1007      * @since  1.4
1008      */
1009     public boolean contentEquals(StringBuffer sb) {
1010         return contentEquals((CharSequence)sb);
1011     }
1012 
1013     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1014         int len = length();
1015         if (len != sb.length()) {
1016             return false;
1017         }
1018         byte v1[] = value;
1019         byte v2[] = sb.getValue();
1020         if (coder() == sb.getCoder()) {
1021             int n = v1.length;
1022             for (int i = 0; i < n; i++) {
1023                 if (v1[i] != v2[i]) {
1024                     return false;
1025                 }
1026             }
1027         } else {
1028             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1029                 return false;
1030             }
1031             return StringUTF16.contentEquals(v1, v2, len);
1032         }
1033         return true;
1034     }
1035 
1036     /**
1037      * Compares this string to the specified {@code CharSequence}.  The
1038      * result is {@code true} if and only if this {@code String} represents the
1039      * same sequence of char values as the specified sequence. Note that if the
1040      * {@code CharSequence} is a {@code StringBuffer} then the method
1041      * synchronizes on it.
1042      *
1043      * <p>For finer-grained String comparison, refer to
1044      * {@link java.text.Collator}.
1045      *
1046      * @param  cs
1047      *         The sequence to compare this {@code String} against
1048      *
1049      * @return  {@code true} if this {@code String} represents the same
1050      *          sequence of char values as the specified sequence, {@code
1051      *          false} otherwise
1052      *
1053      * @since  1.5
1054      */
1055     public boolean contentEquals(CharSequence cs) {
1056         // Argument is a StringBuffer, StringBuilder
1057         if (cs instanceof AbstractStringBuilder) {
1058             if (cs instanceof StringBuffer) {
1059                 synchronized(cs) {
1060                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1061                 }
1062             } else {
1063                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1064             }
1065         }
1066         // Argument is a String
1067         if (cs instanceof String) {
1068             return equals(cs);
1069         }
1070         // Argument is a generic CharSequence
1071         int n = cs.length();
1072         if (n != length()) {
1073             return false;
1074         }
1075         byte[] val = this.value;
1076         if (isLatin1()) {
1077             for (int i = 0; i < n; i++) {
1078                 if ((val[i] & 0xff) != cs.charAt(i)) {
1079                     return false;
1080                 }
1081             }
1082         } else {
1083             if (!StringUTF16.contentEquals(val, cs, n)) {
1084                 return false;
1085             }
1086         }
1087         return true;
1088     }
1089 
1090     /**
1091      * Compares this {@code String} to another {@code String}, ignoring case
1092      * considerations.  Two strings are considered equal ignoring case if they
1093      * are of the same length and corresponding characters in the two strings
1094      * are equal ignoring case.
1095      *
1096      * <p> Two characters {@code c1} and {@code c2} are considered the same
1097      * ignoring case if at least one of the following is true:
1098      * <ul>
1099      *   <li> The two characters are the same (as compared by the
1100      *        {@code ==} operator)
1101      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1102      *        on each character produces the same result
1103      * </ul>
1104      *
1105      * <p>Note that this method does <em>not</em> take locale into account, and
1106      * will result in unsatisfactory results for certain locales.  The
1107      * {@link java.text.Collator} class provides locale-sensitive comparison.
1108      *
1109      * @param  anotherString
1110      *         The {@code String} to compare this {@code String} against
1111      *
1112      * @return  {@code true} if the argument is not {@code null} and it
1113      *          represents an equivalent {@code String} ignoring case; {@code
1114      *          false} otherwise
1115      *
1116      * @see  #equals(Object)
1117      */
1118     public boolean equalsIgnoreCase(String anotherString) {
1119         return (this == anotherString) ? true
1120                 : (anotherString != null)
1121                 && (anotherString.length() == length())
1122                 && regionMatches(true, 0, anotherString, 0, length());
1123     }
1124 
1125     /**
1126      * Compares two strings lexicographically.
1127      * The comparison is based on the Unicode value of each character in
1128      * the strings. The character sequence represented by this
1129      * {@code String} object is compared lexicographically to the
1130      * character sequence represented by the argument string. The result is
1131      * a negative integer if this {@code String} object
1132      * lexicographically precedes the argument string. The result is a
1133      * positive integer if this {@code String} object lexicographically
1134      * follows the argument string. The result is zero if the strings
1135      * are equal; {@code compareTo} returns {@code 0} exactly when
1136      * the {@link #equals(Object)} method would return {@code true}.
1137      * <p>
1138      * This is the definition of lexicographic ordering. If two strings are
1139      * different, then either they have different characters at some index
1140      * that is a valid index for both strings, or their lengths are different,
1141      * or both. If they have different characters at one or more index
1142      * positions, let <i>k</i> be the smallest such index; then the string
1143      * whose character at position <i>k</i> has the smaller value, as
1144      * determined by using the {@code <} operator, lexicographically precedes the
1145      * other string. In this case, {@code compareTo} returns the
1146      * difference of the two character values at position {@code k} in
1147      * the two string -- that is, the value:
1148      * <blockquote><pre>
1149      * this.charAt(k)-anotherString.charAt(k)
1150      * </pre></blockquote>
1151      * If there is no index position at which they differ, then the shorter
1152      * string lexicographically precedes the longer string. In this case,
1153      * {@code compareTo} returns the difference of the lengths of the
1154      * strings -- that is, the value:
1155      * <blockquote><pre>
1156      * this.length()-anotherString.length()
1157      * </pre></blockquote>
1158      *
1159      * <p>For finer-grained String comparison, refer to
1160      * {@link java.text.Collator}.
1161      *
1162      * @param   anotherString   the {@code String} to be compared.
1163      * @return  the value {@code 0} if the argument string is equal to
1164      *          this string; a value less than {@code 0} if this string
1165      *          is lexicographically less than the string argument; and a
1166      *          value greater than {@code 0} if this string is
1167      *          lexicographically greater than the string argument.
1168      */
1169     public int compareTo(String anotherString) {
1170         byte v1[] = value;
1171         byte v2[] = anotherString.value;
1172         if (coder() == anotherString.coder()) {
1173             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1174                               : StringUTF16.compareTo(v1, v2);
1175         }
1176         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1177                           : StringUTF16.compareToLatin1(v1, v2);
1178      }
1179 
1180     /**
1181      * A Comparator that orders {@code String} objects as by
1182      * {@code compareToIgnoreCase}. This comparator is serializable.
1183      * <p>
1184      * Note that this Comparator does <em>not</em> take locale into account,
1185      * and will result in an unsatisfactory ordering for certain locales.
1186      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1187      *
1188      * @see     java.text.Collator
1189      * @since   1.2
1190      */
1191     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1192                                          = new CaseInsensitiveComparator();
1193     private static class CaseInsensitiveComparator
1194             implements Comparator<String>, java.io.Serializable {
1195         // use serialVersionUID from JDK 1.2.2 for interoperability
1196         private static final long serialVersionUID = 8575799808933029326L;
1197 
1198         public int compare(String s1, String s2) {
1199             byte v1[] = s1.value;
1200             byte v2[] = s2.value;
1201             if (s1.coder() == s2.coder()) {
1202                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1203                                      : StringUTF16.compareToCI(v1, v2);
1204             }
1205             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1206                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1207         }
1208 
1209         /** Replaces the de-serialized object. */
1210         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1211     }
1212 
1213     /**
1214      * Compares two strings lexicographically, ignoring case
1215      * differences. This method returns an integer whose sign is that of
1216      * calling {@code compareTo} with normalized versions of the strings
1217      * where case differences have been eliminated by calling
1218      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1219      * each character.
1220      * <p>
1221      * Note that this method does <em>not</em> take locale into account,
1222      * and will result in an unsatisfactory ordering for certain locales.
1223      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1224      *
1225      * @param   str   the {@code String} to be compared.
1226      * @return  a negative integer, zero, or a positive integer as the
1227      *          specified String is greater than, equal to, or less
1228      *          than this String, ignoring case considerations.
1229      * @see     java.text.Collator
1230      * @since   1.2
1231      */
1232     public int compareToIgnoreCase(String str) {
1233         return CASE_INSENSITIVE_ORDER.compare(this, str);
1234     }
1235 
1236     /**
1237      * Tests if two string regions are equal.
1238      * <p>
1239      * A substring of this {@code String} object is compared to a substring
1240      * of the argument other. The result is true if these substrings
1241      * represent identical character sequences. The substring of this
1242      * {@code String} object to be compared begins at index {@code toffset}
1243      * and has length {@code len}. The substring of other to be compared
1244      * begins at index {@code ooffset} and has length {@code len}. The
1245      * result is {@code false} if and only if at least one of the following
1246      * is true:
1247      * <ul><li>{@code toffset} is negative.
1248      * <li>{@code ooffset} is negative.
1249      * <li>{@code toffset+len} is greater than the length of this
1250      * {@code String} object.
1251      * <li>{@code ooffset+len} is greater than the length of the other
1252      * argument.
1253      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1254      * such that:
1255      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1256      * <i>k</i>{@code )}
1257      * </ul>
1258      *
1259      * <p>Note that this method does <em>not</em> take locale into account.  The
1260      * {@link java.text.Collator} class provides locale-sensitive comparison.
1261      *
1262      * @param   toffset   the starting offset of the subregion in this string.
1263      * @param   other     the string argument.
1264      * @param   ooffset   the starting offset of the subregion in the string
1265      *                    argument.
1266      * @param   len       the number of characters to compare.
1267      * @return  {@code true} if the specified subregion of this string
1268      *          exactly matches the specified subregion of the string argument;
1269      *          {@code false} otherwise.
1270      */
1271     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1272         byte tv[] = value;
1273         byte ov[] = other.value;
1274         // Note: toffset, ooffset, or len might be near -1>>>1.
1275         if ((ooffset < 0) || (toffset < 0) ||
1276              (toffset > (long)length() - len) ||
1277              (ooffset > (long)other.length() - len)) {
1278             return false;
1279         }
1280         if (coder() == other.coder()) {
1281             if (!isLatin1() && (len > 0)) {
1282                 toffset = toffset << 1;
1283                 ooffset = ooffset << 1;
1284                 len = len << 1;
1285             }
1286             while (len-- > 0) {
1287                 if (tv[toffset++] != ov[ooffset++]) {
1288                     return false;
1289                 }
1290             }
1291         } else {
1292             if (coder() == LATIN1) {
1293                 while (len-- > 0) {
1294                     if (StringLatin1.getChar(tv, toffset++) !=
1295                         StringUTF16.getChar(ov, ooffset++)) {
1296                         return false;
1297                     }
1298                 }
1299             } else {
1300                 while (len-- > 0) {
1301                     if (StringUTF16.getChar(tv, toffset++) !=
1302                         StringLatin1.getChar(ov, ooffset++)) {
1303                         return false;
1304                     }
1305                 }
1306             }
1307         }
1308         return true;
1309     }
1310 
1311     /**
1312      * Tests if two string regions are equal.
1313      * <p>
1314      * A substring of this {@code String} object is compared to a substring
1315      * of the argument {@code other}. The result is {@code true} if these
1316      * substrings represent character sequences that are the same, ignoring
1317      * case if and only if {@code ignoreCase} is true. The substring of
1318      * this {@code String} object to be compared begins at index
1319      * {@code toffset} and has length {@code len}. The substring of
1320      * {@code other} to be compared begins at index {@code ooffset} and
1321      * has length {@code len}. The result is {@code false} if and only if
1322      * at least one of the following is true:
1323      * <ul><li>{@code toffset} is negative.
1324      * <li>{@code ooffset} is negative.
1325      * <li>{@code toffset+len} is greater than the length of this
1326      * {@code String} object.
1327      * <li>{@code ooffset+len} is greater than the length of the other
1328      * argument.
1329      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1330      * integer <i>k</i> less than {@code len} such that:
1331      * <blockquote><pre>
1332      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1333      * </pre></blockquote>
1334      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1335      * integer <i>k</i> less than {@code len} such that:
1336      * <blockquote><pre>
1337      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1338      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1339      * </pre></blockquote>
1340      * </ul>
1341      *
1342      * <p>Note that this method does <em>not</em> take locale into account,
1343      * and will result in unsatisfactory results for certain locales when
1344      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1345      * provides locale-sensitive comparison.
1346      *
1347      * @param   ignoreCase   if {@code true}, ignore case when comparing
1348      *                       characters.
1349      * @param   toffset      the starting offset of the subregion in this
1350      *                       string.
1351      * @param   other        the string argument.
1352      * @param   ooffset      the starting offset of the subregion in the string
1353      *                       argument.
1354      * @param   len          the number of characters to compare.
1355      * @return  {@code true} if the specified subregion of this string
1356      *          matches the specified subregion of the string argument;
1357      *          {@code false} otherwise. Whether the matching is exact
1358      *          or case insensitive depends on the {@code ignoreCase}
1359      *          argument.
1360      */
1361     public boolean regionMatches(boolean ignoreCase, int toffset,
1362             String other, int ooffset, int len) {
1363         if (!ignoreCase) {
1364             return regionMatches(toffset, other, ooffset, len);
1365         }
1366         // Note: toffset, ooffset, or len might be near -1>>>1.
1367         if ((ooffset < 0) || (toffset < 0)
1368                 || (toffset > (long)length() - len)
1369                 || (ooffset > (long)other.length() - len)) {
1370             return false;
1371         }
1372         byte tv[] = value;
1373         byte ov[] = other.value;
1374         if (coder() == other.coder()) {
1375             return isLatin1()
1376               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1377               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1378         }
1379         return isLatin1()
1380               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1381               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1382     }
1383 
1384     /**
1385      * Tests if the substring of this string beginning at the
1386      * specified index starts with the specified prefix.
1387      *
1388      * @param   prefix    the prefix.
1389      * @param   toffset   where to begin looking in this string.
1390      * @return  {@code true} if the character sequence represented by the
1391      *          argument is a prefix of the substring of this object starting
1392      *          at index {@code toffset}; {@code false} otherwise.
1393      *          The result is {@code false} if {@code toffset} is
1394      *          negative or greater than the length of this
1395      *          {@code String} object; otherwise the result is the same
1396      *          as the result of the expression
1397      *          <pre>
1398      *          this.substring(toffset).startsWith(prefix)
1399      *          </pre>
1400      */
1401     public boolean startsWith(String prefix, int toffset) {
1402         // Note: toffset might be near -1>>>1.
1403         if (toffset < 0 || toffset > length() - prefix.length()) {
1404             return false;
1405         }
1406         byte ta[] = value;
1407         byte pa[] = prefix.value;
1408         int po = 0;
1409         int pc = pa.length;
1410         if (coder() == prefix.coder()) {
1411             int to = isLatin1() ? toffset : toffset << 1;
1412             while (po < pc) {
1413                 if (ta[to++] != pa[po++]) {
1414                     return false;
1415                 }
1416             }
1417         } else {
1418             if (isLatin1()) {  // && pcoder == UTF16
1419                 return false;
1420             }
1421             // coder == UTF16 && pcoder == LATIN1)
1422             while (po < pc) {
1423                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1424                     return false;
1425                }
1426             }
1427         }
1428         return true;
1429     }
1430 
1431     /**
1432      * Tests if this string starts with the specified prefix.
1433      *
1434      * @param   prefix   the prefix.
1435      * @return  {@code true} if the character sequence represented by the
1436      *          argument is a prefix of the character sequence represented by
1437      *          this string; {@code false} otherwise.
1438      *          Note also that {@code true} will be returned if the
1439      *          argument is an empty string or is equal to this
1440      *          {@code String} object as determined by the
1441      *          {@link #equals(Object)} method.
1442      * @since   1.0
1443      */
1444     public boolean startsWith(String prefix) {
1445         return startsWith(prefix, 0);
1446     }
1447 
1448     /**
1449      * Tests if this string ends with the specified suffix.
1450      *
1451      * @param   suffix   the suffix.
1452      * @return  {@code true} if the character sequence represented by the
1453      *          argument is a suffix of the character sequence represented by
1454      *          this object; {@code false} otherwise. Note that the
1455      *          result will be {@code true} if the argument is the
1456      *          empty string or is equal to this {@code String} object
1457      *          as determined by the {@link #equals(Object)} method.
1458      */
1459     public boolean endsWith(String suffix) {
1460         return startsWith(suffix, length() - suffix.length());
1461     }
1462 
1463     /**
1464      * Returns a hash code for this string. The hash code for a
1465      * {@code String} object is computed as
1466      * <blockquote><pre>
1467      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1468      * </pre></blockquote>
1469      * using {@code int} arithmetic, where {@code s[i]} is the
1470      * <i>i</i>th character of the string, {@code n} is the length of
1471      * the string, and {@code ^} indicates exponentiation.
1472      * (The hash value of the empty string is zero.)
1473      *
1474      * @return  a hash code value for this object.
1475      */
1476     public int hashCode() {
1477         int h = hash;
1478         if (h == 0 && value.length > 0) {
1479             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1480                                   : StringUTF16.hashCode(value);
1481         }
1482         return h;
1483     }
1484 
1485     /**
1486      * Returns the index within this string of the first occurrence of
1487      * the specified character. If a character with value
1488      * {@code ch} occurs in the character sequence represented by
1489      * this {@code String} object, then the index (in Unicode
1490      * code units) of the first such occurrence is returned. For
1491      * values of {@code ch} in the range from 0 to 0xFFFF
1492      * (inclusive), this is the smallest value <i>k</i> such that:
1493      * <blockquote><pre>
1494      * this.charAt(<i>k</i>) == ch
1495      * </pre></blockquote>
1496      * is true. For other values of {@code ch}, it is the
1497      * smallest value <i>k</i> such that:
1498      * <blockquote><pre>
1499      * this.codePointAt(<i>k</i>) == ch
1500      * </pre></blockquote>
1501      * is true. In either case, if no such character occurs in this
1502      * string, then {@code -1} is returned.
1503      *
1504      * @param   ch   a character (Unicode code point).
1505      * @return  the index of the first occurrence of the character in the
1506      *          character sequence represented by this object, or
1507      *          {@code -1} if the character does not occur.
1508      */
1509     public int indexOf(int ch) {
1510         return indexOf(ch, 0);
1511     }
1512 
1513     /**
1514      * Returns the index within this string of the first occurrence of the
1515      * specified character, starting the search at the specified index.
1516      * <p>
1517      * If a character with value {@code ch} occurs in the
1518      * character sequence represented by this {@code String}
1519      * object at an index no smaller than {@code fromIndex}, then
1520      * the index of the first such occurrence is returned. For values
1521      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1522      * this is the smallest value <i>k</i> such that:
1523      * <blockquote><pre>
1524      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1525      * </pre></blockquote>
1526      * is true. For other values of {@code ch}, it is the
1527      * smallest value <i>k</i> such that:
1528      * <blockquote><pre>
1529      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1530      * </pre></blockquote>
1531      * is true. In either case, if no such character occurs in this
1532      * string at or after position {@code fromIndex}, then
1533      * {@code -1} is returned.
1534      *
1535      * <p>
1536      * There is no restriction on the value of {@code fromIndex}. If it
1537      * is negative, it has the same effect as if it were zero: this entire
1538      * string may be searched. If it is greater than the length of this
1539      * string, it has the same effect as if it were equal to the length of
1540      * this string: {@code -1} is returned.
1541      *
1542      * <p>All indices are specified in {@code char} values
1543      * (Unicode code units).
1544      *
1545      * @param   ch          a character (Unicode code point).
1546      * @param   fromIndex   the index to start the search from.
1547      * @return  the index of the first occurrence of the character in the
1548      *          character sequence represented by this object that is greater
1549      *          than or equal to {@code fromIndex}, or {@code -1}
1550      *          if the character does not occur.
1551      */
1552     public int indexOf(int ch, int fromIndex) {
1553         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1554                           : StringUTF16.indexOf(value, ch, fromIndex);
1555     }
1556 
1557     /**
1558      * Returns the index within this string of the last occurrence of
1559      * the specified character. For values of {@code ch} in the
1560      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1561      * units) returned is the largest value <i>k</i> such that:
1562      * <blockquote><pre>
1563      * this.charAt(<i>k</i>) == ch
1564      * </pre></blockquote>
1565      * is true. For other values of {@code ch}, it is the
1566      * largest value <i>k</i> such that:
1567      * <blockquote><pre>
1568      * this.codePointAt(<i>k</i>) == ch
1569      * </pre></blockquote>
1570      * is true.  In either case, if no such character occurs in this
1571      * string, then {@code -1} is returned.  The
1572      * {@code String} is searched backwards starting at the last
1573      * character.
1574      *
1575      * @param   ch   a character (Unicode code point).
1576      * @return  the index of the last occurrence of the character in the
1577      *          character sequence represented by this object, or
1578      *          {@code -1} if the character does not occur.
1579      */
1580     public int lastIndexOf(int ch) {
1581         return lastIndexOf(ch, length() - 1);
1582     }
1583 
1584     /**
1585      * Returns the index within this string of the last occurrence of
1586      * the specified character, searching backward starting at the
1587      * specified index. For values of {@code ch} in the range
1588      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1589      * value <i>k</i> such that:
1590      * <blockquote><pre>
1591      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1592      * </pre></blockquote>
1593      * is true. For other values of {@code ch}, it is the
1594      * largest value <i>k</i> such that:
1595      * <blockquote><pre>
1596      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1597      * </pre></blockquote>
1598      * is true. In either case, if no such character occurs in this
1599      * string at or before position {@code fromIndex}, then
1600      * {@code -1} is returned.
1601      *
1602      * <p>All indices are specified in {@code char} values
1603      * (Unicode code units).
1604      *
1605      * @param   ch          a character (Unicode code point).
1606      * @param   fromIndex   the index to start the search from. There is no
1607      *          restriction on the value of {@code fromIndex}. If it is
1608      *          greater than or equal to the length of this string, it has
1609      *          the same effect as if it were equal to one less than the
1610      *          length of this string: this entire string may be searched.
1611      *          If it is negative, it has the same effect as if it were -1:
1612      *          -1 is returned.
1613      * @return  the index of the last occurrence of the character in the
1614      *          character sequence represented by this object that is less
1615      *          than or equal to {@code fromIndex}, or {@code -1}
1616      *          if the character does not occur before that point.
1617      */
1618     public int lastIndexOf(int ch, int fromIndex) {
1619         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1620                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1621     }
1622 
1623     /**
1624      * Returns the index within this string of the first occurrence of the
1625      * specified substring.
1626      *
1627      * <p>The returned index is the smallest value {@code k} for which:
1628      * <pre>{@code
1629      * this.startsWith(str, k)
1630      * }</pre>
1631      * If no such value of {@code k} exists, then {@code -1} is returned.
1632      *
1633      * @param   str   the substring to search for.
1634      * @return  the index of the first occurrence of the specified substring,
1635      *          or {@code -1} if there is no such occurrence.
1636      */
1637     public int indexOf(String str) {
1638         if (coder() == str.coder()) {
1639             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1640                               : StringUTF16.indexOf(value, str.value);
1641         }
1642         if (coder() == LATIN1) {  // str.coder == UTF16
1643             return -1;
1644         }
1645         return StringUTF16.indexOfLatin1(value, str.value);
1646     }
1647 
1648     /**
1649      * Returns the index within this string of the first occurrence of the
1650      * specified substring, starting at the specified index.
1651      *
1652      * <p>The returned index is the smallest value {@code k} for which:
1653      * <pre>{@code
1654      *     k >= Math.min(fromIndex, this.length()) &&
1655      *                   this.startsWith(str, k)
1656      * }</pre>
1657      * If no such value of {@code k} exists, then {@code -1} is returned.
1658      *
1659      * @param   str         the substring to search for.
1660      * @param   fromIndex   the index from which to start the search.
1661      * @return  the index of the first occurrence of the specified substring,
1662      *          starting at the specified index,
1663      *          or {@code -1} if there is no such occurrence.
1664      */
1665     public int indexOf(String str, int fromIndex) {
1666         return indexOf(value, coder(), length(), str, fromIndex);
1667     }
1668 
1669     /**
1670      * Code shared by String and AbstractStringBuilder to do searches. The
1671      * source is the character array being searched, and the target
1672      * is the string being searched for.
1673      *
1674      * @param   src       the characters being searched.
1675      * @param   srcCoder  the coder of the source string.
1676      * @param   srcCount  length of the source string.
1677      * @param   tgtStr    the characters being searched for.
1678      * @param   fromIndex the index to begin searching from.
1679      */
1680     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1681                        String tgtStr, int fromIndex) {
1682         byte[] tgt    = tgtStr.value;
1683         byte tgtCoder = tgtStr.coder();
1684         int tgtCount  = tgtStr.length();
1685 
1686         if (fromIndex >= srcCount) {
1687             return (tgtCount == 0 ? srcCount : -1);
1688         }
1689         if (fromIndex < 0) {
1690             fromIndex = 0;
1691         }
1692         if (tgtCount == 0) {
1693             return fromIndex;
1694         }
1695         if (tgtCount > srcCount) {
1696             return -1;
1697         }
1698         if (srcCoder == tgtCoder) {
1699             return srcCoder == LATIN1
1700                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1701                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1702         }
1703         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1704             return -1;
1705         }
1706         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1707         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1708     }
1709 
1710     /**
1711      * Returns the index within this string of the last occurrence of the
1712      * specified substring.  The last occurrence of the empty string ""
1713      * is considered to occur at the index value {@code this.length()}.
1714      *
1715      * <p>The returned index is the largest value {@code k} for which:
1716      * <pre>{@code
1717      * this.startsWith(str, k)
1718      * }</pre>
1719      * If no such value of {@code k} exists, then {@code -1} is returned.
1720      *
1721      * @param   str   the substring to search for.
1722      * @return  the index of the last occurrence of the specified substring,
1723      *          or {@code -1} if there is no such occurrence.
1724      */
1725     public int lastIndexOf(String str) {
1726         return lastIndexOf(str, length());
1727     }
1728 
1729     /**
1730      * Returns the index within this string of the last occurrence of the
1731      * specified substring, searching backward starting at the specified index.
1732      *
1733      * <p>The returned index is the largest value {@code k} for which:
1734      * <pre>{@code
1735      *     k <= Math.min(fromIndex, this.length()) &&
1736      *                   this.startsWith(str, k)
1737      * }</pre>
1738      * If no such value of {@code k} exists, then {@code -1} is returned.
1739      *
1740      * @param   str         the substring to search for.
1741      * @param   fromIndex   the index to start the search from.
1742      * @return  the index of the last occurrence of the specified substring,
1743      *          searching backward from the specified index,
1744      *          or {@code -1} if there is no such occurrence.
1745      */
1746     public int lastIndexOf(String str, int fromIndex) {
1747         return lastIndexOf(value, coder(), length(), str, fromIndex);
1748     }
1749 
1750     /**
1751      * Code shared by String and AbstractStringBuilder to do searches. The
1752      * source is the character array being searched, and the target
1753      * is the string being searched for.
1754      *
1755      * @param   src         the characters being searched.
1756      * @param   srcCoder    coder handles the mapping between bytes/chars
1757      * @param   srcCount    count of the source string.
1758      * @param   tgt         the characters being searched for.
1759      * @param   fromIndex   the index to begin searching from.
1760      */
1761     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1762                            String tgtStr, int fromIndex) {
1763         byte[] tgt = tgtStr.value;
1764         byte tgtCoder = tgtStr.coder();
1765         int tgtCount = tgtStr.length();
1766         /*
1767          * Check arguments; return immediately where possible. For
1768          * consistency, don't check for null str.
1769          */
1770         int rightIndex = srcCount - tgtCount;
1771         if (fromIndex > rightIndex) {
1772             fromIndex = rightIndex;
1773         }
1774         if (fromIndex < 0) {
1775             return -1;
1776         }
1777         /* Empty string always matches. */
1778         if (tgtCount == 0) {
1779             return fromIndex;
1780         }
1781         if (srcCoder == tgtCoder) {
1782             return srcCoder == LATIN1
1783                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1784                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1785         }
1786         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1787             return -1;
1788         }
1789         // srcCoder == UTF16 && tgtCoder == LATIN1
1790         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1791     }
1792 
1793     /**
1794      * Returns a string that is a substring of this string. The
1795      * substring begins with the character at the specified index and
1796      * extends to the end of this string. <p>
1797      * Examples:
1798      * <blockquote><pre>
1799      * "unhappy".substring(2) returns "happy"
1800      * "Harbison".substring(3) returns "bison"
1801      * "emptiness".substring(9) returns "" (an empty string)
1802      * </pre></blockquote>
1803      *
1804      * @param      beginIndex   the beginning index, inclusive.
1805      * @return     the specified substring.
1806      * @exception  IndexOutOfBoundsException  if
1807      *             {@code beginIndex} is negative or larger than the
1808      *             length of this {@code String} object.
1809      */
1810     public String substring(int beginIndex) {
1811         if (beginIndex < 0) {
1812             throw new StringIndexOutOfBoundsException(beginIndex);
1813         }
1814         int subLen = length() - beginIndex;
1815         if (subLen < 0) {
1816             throw new StringIndexOutOfBoundsException(subLen);
1817         }
1818         if (beginIndex == 0) {
1819             return this;
1820         }
1821         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1822                           : StringUTF16.newString(value, beginIndex, subLen);
1823     }
1824 
1825     /**
1826      * Returns a string that is a substring of this string. The
1827      * substring begins at the specified {@code beginIndex} and
1828      * extends to the character at index {@code endIndex - 1}.
1829      * Thus the length of the substring is {@code endIndex-beginIndex}.
1830      * <p>
1831      * Examples:
1832      * <blockquote><pre>
1833      * "hamburger".substring(4, 8) returns "urge"
1834      * "smiles".substring(1, 5) returns "mile"
1835      * </pre></blockquote>
1836      *
1837      * @param      beginIndex   the beginning index, inclusive.
1838      * @param      endIndex     the ending index, exclusive.
1839      * @return     the specified substring.
1840      * @exception  IndexOutOfBoundsException  if the
1841      *             {@code beginIndex} is negative, or
1842      *             {@code endIndex} is larger than the length of
1843      *             this {@code String} object, or
1844      *             {@code beginIndex} is larger than
1845      *             {@code endIndex}.
1846      */
1847     public String substring(int beginIndex, int endIndex) {
1848         int length = length();
1849         checkBoundsBeginEnd(beginIndex, endIndex, length);
1850         int subLen = endIndex - beginIndex;
1851         if (beginIndex == 0 && endIndex == length) {
1852             return this;
1853         }
1854         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1855                           : StringUTF16.newString(value, beginIndex, subLen);
1856     }
1857 
1858     /**
1859      * Returns a character sequence that is a subsequence of this sequence.
1860      *
1861      * <p> An invocation of this method of the form
1862      *
1863      * <blockquote><pre>
1864      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1865      *
1866      * behaves in exactly the same way as the invocation
1867      *
1868      * <blockquote><pre>
1869      * str.substring(begin,&nbsp;end)</pre></blockquote>
1870      *
1871      * @apiNote
1872      * This method is defined so that the {@code String} class can implement
1873      * the {@link CharSequence} interface.
1874      *
1875      * @param   beginIndex   the begin index, inclusive.
1876      * @param   endIndex     the end index, exclusive.
1877      * @return  the specified subsequence.
1878      *
1879      * @throws  IndexOutOfBoundsException
1880      *          if {@code beginIndex} or {@code endIndex} is negative,
1881      *          if {@code endIndex} is greater than {@code length()},
1882      *          or if {@code beginIndex} is greater than {@code endIndex}
1883      *
1884      * @since 1.4
1885      * @spec JSR-51
1886      */
1887     public CharSequence subSequence(int beginIndex, int endIndex) {
1888         return this.substring(beginIndex, endIndex);
1889     }
1890 
1891     /**
1892      * Concatenates the specified string to the end of this string.
1893      * <p>
1894      * If the length of the argument string is {@code 0}, then this
1895      * {@code String} object is returned. Otherwise, a
1896      * {@code String} object is returned that represents a character
1897      * sequence that is the concatenation of the character sequence
1898      * represented by this {@code String} object and the character
1899      * sequence represented by the argument string.<p>
1900      * Examples:
1901      * <blockquote><pre>
1902      * "cares".concat("s") returns "caress"
1903      * "to".concat("get").concat("her") returns "together"
1904      * </pre></blockquote>
1905      *
1906      * @param   str   the {@code String} that is concatenated to the end
1907      *                of this {@code String}.
1908      * @return  a string that represents the concatenation of this object's
1909      *          characters followed by the string argument's characters.
1910      */
1911     public String concat(String str) {
1912         int olen = str.length();
1913         if (olen == 0) {
1914             return this;
1915         }
1916         if (coder() == str.coder()) {
1917             byte[] val = this.value;
1918             byte[] oval = str.value;
1919             int len = val.length + oval.length;
1920             byte[] buf = Arrays.copyOf(val, len);
1921             System.arraycopy(oval, 0, buf, val.length, oval.length);
1922             return new String(buf, coder);
1923         }
1924         int len = length();
1925         byte[] buf = StringUTF16.newBytesFor(len + olen);
1926         getBytes(buf, 0, UTF16);
1927         str.getBytes(buf, len, UTF16);
1928         return new String(buf, UTF16);
1929     }
1930 
1931     /**
1932      * Returns a string resulting from replacing all occurrences of
1933      * {@code oldChar} in this string with {@code newChar}.
1934      * <p>
1935      * If the character {@code oldChar} does not occur in the
1936      * character sequence represented by this {@code String} object,
1937      * then a reference to this {@code String} object is returned.
1938      * Otherwise, a {@code String} object is returned that
1939      * represents a character sequence identical to the character sequence
1940      * represented by this {@code String} object, except that every
1941      * occurrence of {@code oldChar} is replaced by an occurrence
1942      * of {@code newChar}.
1943      * <p>
1944      * Examples:
1945      * <blockquote><pre>
1946      * "mesquite in your cellar".replace('e', 'o')
1947      *         returns "mosquito in your collar"
1948      * "the war of baronets".replace('r', 'y')
1949      *         returns "the way of bayonets"
1950      * "sparring with a purple porpoise".replace('p', 't')
1951      *         returns "starring with a turtle tortoise"
1952      * "JonL".replace('q', 'x') returns "JonL" (no change)
1953      * </pre></blockquote>
1954      *
1955      * @param   oldChar   the old character.
1956      * @param   newChar   the new character.
1957      * @return  a string derived from this string by replacing every
1958      *          occurrence of {@code oldChar} with {@code newChar}.
1959      */
1960     public String replace(char oldChar, char newChar) {
1961         if (oldChar != newChar) {
1962             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
1963                                     : StringUTF16.replace(value, oldChar, newChar);
1964             if (ret != null) {
1965                 return ret;
1966             }
1967         }
1968         return this;
1969     }
1970 
1971     /**
1972      * Tells whether or not this string matches the given <a
1973      * href="../util/regex/Pattern.html#sum">regular expression</a>.
1974      *
1975      * <p> An invocation of this method of the form
1976      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
1977      * same result as the expression
1978      *
1979      * <blockquote>
1980      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
1981      * matches(<i>regex</i>, <i>str</i>)}
1982      * </blockquote>
1983      *
1984      * @param   regex
1985      *          the regular expression to which this string is to be matched
1986      *
1987      * @return  {@code true} if, and only if, this string matches the
1988      *          given regular expression
1989      *
1990      * @throws  PatternSyntaxException
1991      *          if the regular expression's syntax is invalid
1992      *
1993      * @see java.util.regex.Pattern
1994      *
1995      * @since 1.4
1996      * @spec JSR-51
1997      */
1998     public boolean matches(String regex) {
1999         return Pattern.matches(regex, this);
2000     }
2001 
2002     /**
2003      * Returns true if and only if this string contains the specified
2004      * sequence of char values.
2005      *
2006      * @param s the sequence to search for
2007      * @return true if this string contains {@code s}, false otherwise
2008      * @since 1.5
2009      */
2010     public boolean contains(CharSequence s) {
2011         return indexOf(s.toString()) >= 0;
2012     }
2013 
2014     /**
2015      * Replaces the first substring of this string that matches the given <a
2016      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2017      * given replacement.
2018      *
2019      * <p> An invocation of this method of the form
2020      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2021      * yields exactly the same result as the expression
2022      *
2023      * <blockquote>
2024      * <code>
2025      * {@link java.util.regex.Pattern}.{@link
2026      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2027      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2028      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2029      * </code>
2030      * </blockquote>
2031      *
2032      *<p>
2033      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2034      * replacement string may cause the results to be different than if it were
2035      * being treated as a literal replacement string; see
2036      * {@link java.util.regex.Matcher#replaceFirst}.
2037      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2038      * meaning of these characters, if desired.
2039      *
2040      * @param   regex
2041      *          the regular expression to which this string is to be matched
2042      * @param   replacement
2043      *          the string to be substituted for the first match
2044      *
2045      * @return  The resulting {@code String}
2046      *
2047      * @throws  PatternSyntaxException
2048      *          if the regular expression's syntax is invalid
2049      *
2050      * @see java.util.regex.Pattern
2051      *
2052      * @since 1.4
2053      * @spec JSR-51
2054      */
2055     public String replaceFirst(String regex, String replacement) {
2056         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2057     }
2058 
2059     /**
2060      * Replaces each substring of this string that matches the given <a
2061      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2062      * given replacement.
2063      *
2064      * <p> An invocation of this method of the form
2065      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2066      * yields exactly the same result as the expression
2067      *
2068      * <blockquote>
2069      * <code>
2070      * {@link java.util.regex.Pattern}.{@link
2071      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2072      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2073      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2074      * </code>
2075      * </blockquote>
2076      *
2077      *<p>
2078      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2079      * replacement string may cause the results to be different than if it were
2080      * being treated as a literal replacement string; see
2081      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2082      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2083      * meaning of these characters, if desired.
2084      *
2085      * @param   regex
2086      *          the regular expression to which this string is to be matched
2087      * @param   replacement
2088      *          the string to be substituted for each match
2089      *
2090      * @return  The resulting {@code String}
2091      *
2092      * @throws  PatternSyntaxException
2093      *          if the regular expression's syntax is invalid
2094      *
2095      * @see java.util.regex.Pattern
2096      *
2097      * @since 1.4
2098      * @spec JSR-51
2099      */
2100     public String replaceAll(String regex, String replacement) {
2101         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2102     }
2103 
2104     /**
2105      * Replaces each substring of this string that matches the literal target
2106      * sequence with the specified literal replacement sequence. The
2107      * replacement proceeds from the beginning of the string to the end, for
2108      * example, replacing "aa" with "b" in the string "aaa" will result in
2109      * "ba" rather than "ab".
2110      *
2111      * @param  target The sequence of char values to be replaced
2112      * @param  replacement The replacement sequence of char values
2113      * @return  The resulting string
2114      * @since 1.5
2115      */
2116     public String replace(CharSequence target, CharSequence replacement) {
2117         String tgtStr = target.toString();
2118         String replStr = replacement.toString();
2119         int j = indexOf(tgtStr);
2120         if (j < 0) {
2121             return this;
2122         }
2123         int tgtLen = tgtStr.length();
2124         int tgtLen1 = Math.max(tgtLen, 1);
2125         int thisLen = length();
2126 
2127         int newLenHint = thisLen - tgtLen + replStr.length();
2128         if (newLenHint < 0) {
2129             throw new OutOfMemoryError();
2130         }
2131         StringBuilder sb = new StringBuilder(newLenHint);
2132         int i = 0;
2133         do {
2134             sb.append(this, i, j).append(replStr);
2135             i = j + tgtLen;
2136         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2137         return sb.append(this, i, thisLen).toString();
2138     }
2139 
2140     /**
2141      * Splits this string around matches of the given
2142      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2143      *
2144      * <p> The array returned by this method contains each substring of this
2145      * string that is terminated by another substring that matches the given
2146      * expression or is terminated by the end of the string.  The substrings in
2147      * the array are in the order in which they occur in this string.  If the
2148      * expression does not match any part of the input then the resulting array
2149      * has just one element, namely this string.
2150      *
2151      * <p> When there is a positive-width match at the beginning of this
2152      * string then an empty leading substring is included at the beginning
2153      * of the resulting array. A zero-width match at the beginning however
2154      * never produces such empty leading substring.
2155      *
2156      * <p> The {@code limit} parameter controls the number of times the
2157      * pattern is applied and therefore affects the length of the resulting
2158      * array.  If the limit <i>n</i> is greater than zero then the pattern
2159      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2160      * length will be no greater than <i>n</i>, and the array's last entry
2161      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2162      * is non-positive then the pattern will be applied as many times as
2163      * possible and the array can have any length.  If <i>n</i> is zero then
2164      * the pattern will be applied as many times as possible, the array can
2165      * have any length, and trailing empty strings will be discarded.
2166      *
2167      * <p> The string {@code "boo:and:foo"}, for example, yields the
2168      * following results with these parameters:
2169      *
2170      * <blockquote><table class="plain">
2171      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2172      * <thead>
2173      * <tr>
2174      *     <th scope="col">Regex</th>
2175      *     <th scope="col">Limit</th>
2176      *     <th scope="col">Result</th>
2177      * </tr>
2178      * </thead>
2179      * <tbody>
2180      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2181      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2182      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2183      * <tr><!-- : -->
2184      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2185      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2186      * <tr><!-- : -->
2187      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2188      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2189      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2190      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2191      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2192      * <tr><!-- o -->
2193      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2194      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2195      * <tr><!-- o -->
2196      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2197      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2198      * </tbody>
2199      * </table></blockquote>
2200      *
2201      * <p> An invocation of this method of the form
2202      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2203      * yields the same result as the expression
2204      *
2205      * <blockquote>
2206      * <code>
2207      * {@link java.util.regex.Pattern}.{@link
2208      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2209      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2210      * </code>
2211      * </blockquote>
2212      *
2213      *
2214      * @param  regex
2215      *         the delimiting regular expression
2216      *
2217      * @param  limit
2218      *         the result threshold, as described above
2219      *
2220      * @return  the array of strings computed by splitting this string
2221      *          around matches of the given regular expression
2222      *
2223      * @throws  PatternSyntaxException
2224      *          if the regular expression's syntax is invalid
2225      *
2226      * @see java.util.regex.Pattern
2227      *
2228      * @since 1.4
2229      * @spec JSR-51
2230      */
2231     public String[] split(String regex, int limit) {
2232         /* fastpath if the regex is a
2233          (1)one-char String and this character is not one of the
2234             RegEx's meta characters ".$|()[{^?*+\\", or
2235          (2)two-char String and the first char is the backslash and
2236             the second is not the ascii digit or ascii letter.
2237          */
2238         char ch = 0;
2239         if (((regex.length() == 1 &&
2240              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2241              (regex.length() == 2 &&
2242               regex.charAt(0) == '\\' &&
2243               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2244               ((ch-'a')|('z'-ch)) < 0 &&
2245               ((ch-'A')|('Z'-ch)) < 0)) &&
2246             (ch < Character.MIN_HIGH_SURROGATE ||
2247              ch > Character.MAX_LOW_SURROGATE))
2248         {
2249             int off = 0;
2250             int next = 0;
2251             boolean limited = limit > 0;
2252             ArrayList<String> list = new ArrayList<>();
2253             while ((next = indexOf(ch, off)) != -1) {
2254                 if (!limited || list.size() < limit - 1) {
2255                     list.add(substring(off, next));
2256                     off = next + 1;
2257                 } else {    // last one
2258                     //assert (list.size() == limit - 1);
2259                     int last = length();
2260                     list.add(substring(off, last));
2261                     off = last;
2262                     break;
2263                 }
2264             }
2265             // If no match was found, return this
2266             if (off == 0)
2267                 return new String[]{this};
2268 
2269             // Add remaining segment
2270             if (!limited || list.size() < limit)
2271                 list.add(substring(off, length()));
2272 
2273             // Construct result
2274             int resultSize = list.size();
2275             if (limit == 0) {
2276                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2277                     resultSize--;
2278                 }
2279             }
2280             String[] result = new String[resultSize];
2281             return list.subList(0, resultSize).toArray(result);
2282         }
2283         return Pattern.compile(regex).split(this, limit);
2284     }
2285 
2286     /**
2287      * Splits this string around matches of the given <a
2288      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2289      *
2290      * <p> This method works as if by invoking the two-argument {@link
2291      * #split(String, int) split} method with the given expression and a limit
2292      * argument of zero.  Trailing empty strings are therefore not included in
2293      * the resulting array.
2294      *
2295      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2296      * results with these expressions:
2297      *
2298      * <blockquote><table class="plain">
2299      * <caption style="display:none">Split examples showing regex and result</caption>
2300      * <thead>
2301      * <tr>
2302      *  <th scope="col">Regex</th>
2303      *  <th scope="col">Result</th>
2304      * </tr>
2305      * </thead>
2306      * <tbody>
2307      * <tr><th scope="row" style="text-weight:normal">:</th>
2308      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2309      * <tr><th scope="row" style="text-weight:normal">o</th>
2310      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2311      * </tbody>
2312      * </table></blockquote>
2313      *
2314      *
2315      * @param  regex
2316      *         the delimiting regular expression
2317      *
2318      * @return  the array of strings computed by splitting this string
2319      *          around matches of the given regular expression
2320      *
2321      * @throws  PatternSyntaxException
2322      *          if the regular expression's syntax is invalid
2323      *
2324      * @see java.util.regex.Pattern
2325      *
2326      * @since 1.4
2327      * @spec JSR-51
2328      */
2329     public String[] split(String regex) {
2330         return split(regex, 0);
2331     }
2332 
2333     /**
2334      * Returns a new String composed of copies of the
2335      * {@code CharSequence elements} joined together with a copy of
2336      * the specified {@code delimiter}.
2337      *
2338      * <blockquote>For example,
2339      * <pre>{@code
2340      *     String message = String.join("-", "Java", "is", "cool");
2341      *     // message returned is: "Java-is-cool"
2342      * }</pre></blockquote>
2343      *
2344      * Note that if an element is null, then {@code "null"} is added.
2345      *
2346      * @param  delimiter the delimiter that separates each element
2347      * @param  elements the elements to join together.
2348      *
2349      * @return a new {@code String} that is composed of the {@code elements}
2350      *         separated by the {@code delimiter}
2351      *
2352      * @throws NullPointerException If {@code delimiter} or {@code elements}
2353      *         is {@code null}
2354      *
2355      * @see java.util.StringJoiner
2356      * @since 1.8
2357      */
2358     public static String join(CharSequence delimiter, CharSequence... elements) {
2359         Objects.requireNonNull(delimiter);
2360         Objects.requireNonNull(elements);
2361         // Number of elements not likely worth Arrays.stream overhead.
2362         StringJoiner joiner = new StringJoiner(delimiter);
2363         for (CharSequence cs: elements) {
2364             joiner.add(cs);
2365         }
2366         return joiner.toString();
2367     }
2368 
2369     /**
2370      * Returns a new {@code String} composed of copies of the
2371      * {@code CharSequence elements} joined together with a copy of the
2372      * specified {@code delimiter}.
2373      *
2374      * <blockquote>For example,
2375      * <pre>{@code
2376      *     List<String> strings = List.of("Java", "is", "cool");
2377      *     String message = String.join(" ", strings);
2378      *     //message returned is: "Java is cool"
2379      *
2380      *     Set<String> strings =
2381      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2382      *     String message = String.join("-", strings);
2383      *     //message returned is: "Java-is-very-cool"
2384      * }</pre></blockquote>
2385      *
2386      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2387      *
2388      * @param  delimiter a sequence of characters that is used to separate each
2389      *         of the {@code elements} in the resulting {@code String}
2390      * @param  elements an {@code Iterable} that will have its {@code elements}
2391      *         joined together.
2392      *
2393      * @return a new {@code String} that is composed from the {@code elements}
2394      *         argument
2395      *
2396      * @throws NullPointerException If {@code delimiter} or {@code elements}
2397      *         is {@code null}
2398      *
2399      * @see    #join(CharSequence,CharSequence...)
2400      * @see    java.util.StringJoiner
2401      * @since 1.8
2402      */
2403     public static String join(CharSequence delimiter,
2404             Iterable<? extends CharSequence> elements) {
2405         Objects.requireNonNull(delimiter);
2406         Objects.requireNonNull(elements);
2407         StringJoiner joiner = new StringJoiner(delimiter);
2408         for (CharSequence cs: elements) {
2409             joiner.add(cs);
2410         }
2411         return joiner.toString();
2412     }
2413 
2414     /**
2415      * Converts all of the characters in this {@code String} to lower
2416      * case using the rules of the given {@code Locale}.  Case mapping is based
2417      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2418      * class. Since case mappings are not always 1:1 char mappings, the resulting
2419      * {@code String} may be a different length than the original {@code String}.
2420      * <p>
2421      * Examples of lowercase  mappings are in the following table:
2422      * <table class="plain">
2423      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2424      * <thead>
2425      * <tr>
2426      *   <th scope="col">Language Code of Locale</th>
2427      *   <th scope="col">Upper Case</th>
2428      *   <th scope="col">Lower Case</th>
2429      *   <th scope="col">Description</th>
2430      * </tr>
2431      * </thead>
2432      * <tbody>
2433      * <tr>
2434      *   <td>tr (Turkish)</td>
2435      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0130</th>
2436      *   <td>&#92;u0069</td>
2437      *   <td>capital letter I with dot above -&gt; small letter i</td>
2438      * </tr>
2439      * <tr>
2440      *   <td>tr (Turkish)</td>
2441      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0049</th>
2442      *   <td>&#92;u0131</td>
2443      *   <td>capital letter I -&gt; small letter dotless i </td>
2444      * </tr>
2445      * <tr>
2446      *   <td>(all)</td>
2447      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2448      *   <td>french fries</td>
2449      *   <td>lowercased all chars in String</td>
2450      * </tr>
2451      * <tr>
2452      *   <td>(all)</td>
2453      *   <th scope="row" style="font-weight:normal; text-align:left">
2454      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2455      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2456      *   <td>lowercased all chars in String</td>
2457      * </tr>
2458      * </tbody>
2459      * </table>
2460      *
2461      * @param locale use the case transformation rules for this locale
2462      * @return the {@code String}, converted to lowercase.
2463      * @see     java.lang.String#toLowerCase()
2464      * @see     java.lang.String#toUpperCase()
2465      * @see     java.lang.String#toUpperCase(Locale)
2466      * @since   1.1
2467      */
2468     public String toLowerCase(Locale locale) {
2469         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2470                           : StringUTF16.toLowerCase(this, value, locale);
2471     }
2472 
2473     /**
2474      * Converts all of the characters in this {@code String} to lower
2475      * case using the rules of the default locale. This is equivalent to calling
2476      * {@code toLowerCase(Locale.getDefault())}.
2477      * <p>
2478      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2479      * results if used for strings that are intended to be interpreted locale
2480      * independently.
2481      * Examples are programming language identifiers, protocol keys, and HTML
2482      * tags.
2483      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2484      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2485      * LATIN SMALL LETTER DOTLESS I character.
2486      * To obtain correct results for locale insensitive strings, use
2487      * {@code toLowerCase(Locale.ROOT)}.
2488      *
2489      * @return  the {@code String}, converted to lowercase.
2490      * @see     java.lang.String#toLowerCase(Locale)
2491      */
2492     public String toLowerCase() {
2493         return toLowerCase(Locale.getDefault());
2494     }
2495 
2496     /**
2497      * Converts all of the characters in this {@code String} to upper
2498      * case using the rules of the given {@code Locale}. Case mapping is based
2499      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2500      * class. Since case mappings are not always 1:1 char mappings, the resulting
2501      * {@code String} may be a different length than the original {@code String}.
2502      * <p>
2503      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2504      *
2505      * <table class="plain">
2506      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2507      * <thead>
2508      * <tr>
2509      *   <th scope="col">Language Code of Locale</th>
2510      *   <th scope="col">Lower Case</th>
2511      *   <th scope="col">Upper Case</th>
2512      *   <th scope="col">Description</th>
2513      * </tr>
2514      * </thead>
2515      * <tbody>
2516      * <tr>
2517      *   <td>tr (Turkish)</td>
2518      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0069</th>
2519      *   <td>&#92;u0130</td>
2520      *   <td>small letter i -&gt; capital letter I with dot above</td>
2521      * </tr>
2522      * <tr>
2523      *   <td>tr (Turkish)</td>
2524      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0131</th>
2525      *   <td>&#92;u0049</td>
2526      *   <td>small letter dotless i -&gt; capital letter I</td>
2527      * </tr>
2528      * <tr>
2529      *   <td>(all)</td>
2530      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u00df</th>
2531      *   <td>&#92;u0053 &#92;u0053</td>
2532      *   <td>small letter sharp s -&gt; two letters: SS</td>
2533      * </tr>
2534      * <tr>
2535      *   <td>(all)</td>
2536      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2537      *   <td>FAHRVERGN&Uuml;GEN</td>
2538      *   <td></td>
2539      * </tr>
2540      * </tbody>
2541      * </table>
2542      * @param locale use the case transformation rules for this locale
2543      * @return the {@code String}, converted to uppercase.
2544      * @see     java.lang.String#toUpperCase()
2545      * @see     java.lang.String#toLowerCase()
2546      * @see     java.lang.String#toLowerCase(Locale)
2547      * @since   1.1
2548      */
2549     public String toUpperCase(Locale locale) {
2550         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2551                           : StringUTF16.toUpperCase(this, value, locale);
2552     }
2553 
2554     /**
2555      * Converts all of the characters in this {@code String} to upper
2556      * case using the rules of the default locale. This method is equivalent to
2557      * {@code toUpperCase(Locale.getDefault())}.
2558      * <p>
2559      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2560      * results if used for strings that are intended to be interpreted locale
2561      * independently.
2562      * Examples are programming language identifiers, protocol keys, and HTML
2563      * tags.
2564      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2565      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2566      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2567      * To obtain correct results for locale insensitive strings, use
2568      * {@code toUpperCase(Locale.ROOT)}.
2569      *
2570      * @return  the {@code String}, converted to uppercase.
2571      * @see     java.lang.String#toUpperCase(Locale)
2572      */
2573     public String toUpperCase() {
2574         return toUpperCase(Locale.getDefault());
2575     }
2576 
2577     /**
2578      * Returns a string whose value is this string, with any leading and trailing
2579      * whitespace removed.
2580      * <p>
2581      * If this {@code String} object represents an empty character
2582      * sequence, or the first and last characters of character sequence
2583      * represented by this {@code String} object both have codes
2584      * greater than {@code '\u005Cu0020'} (the space character), then a
2585      * reference to this {@code String} object is returned.
2586      * <p>
2587      * Otherwise, if there is no character with a code greater than
2588      * {@code '\u005Cu0020'} in the string, then a
2589      * {@code String} object representing an empty string is
2590      * returned.
2591      * <p>
2592      * Otherwise, let <i>k</i> be the index of the first character in the
2593      * string whose code is greater than {@code '\u005Cu0020'}, and let
2594      * <i>m</i> be the index of the last character in the string whose code
2595      * is greater than {@code '\u005Cu0020'}. A {@code String}
2596      * object is returned, representing the substring of this string that
2597      * begins with the character at index <i>k</i> and ends with the
2598      * character at index <i>m</i>-that is, the result of
2599      * {@code this.substring(k, m + 1)}.
2600      * <p>
2601      * This method may be used to trim whitespace (as defined above) from
2602      * the beginning and end of a string.
2603      *
2604      * @return  A string whose value is this string, with any leading and trailing white
2605      *          space removed, or this string if it has no leading or
2606      *          trailing white space.
2607      */
2608     public String trim() {
2609         String ret = isLatin1() ? StringLatin1.trim(value)
2610                                 : StringUTF16.trim(value);
2611         return ret == null ? this : ret;
2612     }
2613 
2614     /**
2615      * This object (which is already a string!) is itself returned.
2616      *
2617      * @return  the string itself.
2618      */
2619     public String toString() {
2620         return this;
2621     }
2622 
2623     /**
2624      * Returns a stream of {@code int} zero-extending the {@code char} values
2625      * from this sequence.  Any char which maps to a <a
2626      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2627      * point</a> is passed through uninterpreted.
2628      *
2629      * @return an IntStream of char values from this sequence
2630      * @since 9
2631      */
2632     @Override
2633     public IntStream chars() {
2634         return StreamSupport.intStream(
2635             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2636                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2637             false);
2638     }
2639 
2640 
2641     /**
2642      * Returns a stream of code point values from this sequence.  Any surrogate
2643      * pairs encountered in the sequence are combined as if by {@linkplain
2644      * Character#toCodePoint Character.toCodePoint} and the result is passed
2645      * to the stream. Any other code units, including ordinary BMP characters,
2646      * unpaired surrogates, and undefined code units, are zero-extended to
2647      * {@code int} values which are then passed to the stream.
2648      *
2649      * @return an IntStream of Unicode code points from this sequence
2650      * @since 9
2651      */
2652     @Override
2653     public IntStream codePoints() {
2654         return StreamSupport.intStream(
2655             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2656                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2657             false);
2658     }
2659 
2660     /**
2661      * Converts this string to a new character array.
2662      *
2663      * @return  a newly allocated character array whose length is the length
2664      *          of this string and whose contents are initialized to contain
2665      *          the character sequence represented by this string.
2666      */
2667     public char[] toCharArray() {
2668         return isLatin1() ? StringLatin1.toChars(value)
2669                           : StringUTF16.toChars(value);
2670     }
2671 
2672     /**
2673      * Returns a formatted string using the specified format string and
2674      * arguments.
2675      *
2676      * <p> The locale always used is the one returned by {@link
2677      * java.util.Locale#getDefault(java.util.Locale.Category)
2678      * Locale.getDefault(Locale.Category)} with
2679      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2680      *
2681      * @param  format
2682      *         A <a href="../util/Formatter.html#syntax">format string</a>
2683      *
2684      * @param  args
2685      *         Arguments referenced by the format specifiers in the format
2686      *         string.  If there are more arguments than format specifiers, the
2687      *         extra arguments are ignored.  The number of arguments is
2688      *         variable and may be zero.  The maximum number of arguments is
2689      *         limited by the maximum dimension of a Java array as defined by
2690      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2691      *         The behaviour on a
2692      *         {@code null} argument depends on the <a
2693      *         href="../util/Formatter.html#syntax">conversion</a>.
2694      *
2695      * @throws  java.util.IllegalFormatException
2696      *          If a format string contains an illegal syntax, a format
2697      *          specifier that is incompatible with the given arguments,
2698      *          insufficient arguments given the format string, or other
2699      *          illegal conditions.  For specification of all possible
2700      *          formatting errors, see the <a
2701      *          href="../util/Formatter.html#detail">Details</a> section of the
2702      *          formatter class specification.
2703      *
2704      * @return  A formatted string
2705      *
2706      * @see  java.util.Formatter
2707      * @since  1.5
2708      */
2709     public static String format(String format, Object... args) {
2710         return new Formatter().format(format, args).toString();
2711     }
2712 
2713     /**
2714      * Returns a formatted string using the specified locale, format string,
2715      * and arguments.
2716      *
2717      * @param  l
2718      *         The {@linkplain java.util.Locale locale} to apply during
2719      *         formatting.  If {@code l} is {@code null} then no localization
2720      *         is applied.
2721      *
2722      * @param  format
2723      *         A <a href="../util/Formatter.html#syntax">format string</a>
2724      *
2725      * @param  args
2726      *         Arguments referenced by the format specifiers in the format
2727      *         string.  If there are more arguments than format specifiers, the
2728      *         extra arguments are ignored.  The number of arguments is
2729      *         variable and may be zero.  The maximum number of arguments is
2730      *         limited by the maximum dimension of a Java array as defined by
2731      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2732      *         The behaviour on a
2733      *         {@code null} argument depends on the
2734      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2735      *
2736      * @throws  java.util.IllegalFormatException
2737      *          If a format string contains an illegal syntax, a format
2738      *          specifier that is incompatible with the given arguments,
2739      *          insufficient arguments given the format string, or other
2740      *          illegal conditions.  For specification of all possible
2741      *          formatting errors, see the <a
2742      *          href="../util/Formatter.html#detail">Details</a> section of the
2743      *          formatter class specification
2744      *
2745      * @return  A formatted string
2746      *
2747      * @see  java.util.Formatter
2748      * @since  1.5
2749      */
2750     public static String format(Locale l, String format, Object... args) {
2751         return new Formatter(l).format(format, args).toString();
2752     }
2753 
2754     /**
2755      * Returns the string representation of the {@code Object} argument.
2756      *
2757      * @param   obj   an {@code Object}.
2758      * @return  if the argument is {@code null}, then a string equal to
2759      *          {@code "null"}; otherwise, the value of
2760      *          {@code obj.toString()} is returned.
2761      * @see     java.lang.Object#toString()
2762      */
2763     public static String valueOf(Object obj) {
2764         return (obj == null) ? "null" : obj.toString();
2765     }
2766 
2767     /**
2768      * Returns the string representation of the {@code char} array
2769      * argument. The contents of the character array are copied; subsequent
2770      * modification of the character array does not affect the returned
2771      * string.
2772      *
2773      * @param   data     the character array.
2774      * @return  a {@code String} that contains the characters of the
2775      *          character array.
2776      */
2777     public static String valueOf(char data[]) {
2778         return new String(data);
2779     }
2780 
2781     /**
2782      * Returns the string representation of a specific subarray of the
2783      * {@code char} array argument.
2784      * <p>
2785      * The {@code offset} argument is the index of the first
2786      * character of the subarray. The {@code count} argument
2787      * specifies the length of the subarray. The contents of the subarray
2788      * are copied; subsequent modification of the character array does not
2789      * affect the returned string.
2790      *
2791      * @param   data     the character array.
2792      * @param   offset   initial offset of the subarray.
2793      * @param   count    length of the subarray.
2794      * @return  a {@code String} that contains the characters of the
2795      *          specified subarray of the character array.
2796      * @exception IndexOutOfBoundsException if {@code offset} is
2797      *          negative, or {@code count} is negative, or
2798      *          {@code offset+count} is larger than
2799      *          {@code data.length}.
2800      */
2801     public static String valueOf(char data[], int offset, int count) {
2802         return new String(data, offset, count);
2803     }
2804 
2805     /**
2806      * Equivalent to {@link #valueOf(char[], int, int)}.
2807      *
2808      * @param   data     the character array.
2809      * @param   offset   initial offset of the subarray.
2810      * @param   count    length of the subarray.
2811      * @return  a {@code String} that contains the characters of the
2812      *          specified subarray of the character array.
2813      * @exception IndexOutOfBoundsException if {@code offset} is
2814      *          negative, or {@code count} is negative, or
2815      *          {@code offset+count} is larger than
2816      *          {@code data.length}.
2817      */
2818     public static String copyValueOf(char data[], int offset, int count) {
2819         return new String(data, offset, count);
2820     }
2821 
2822     /**
2823      * Equivalent to {@link #valueOf(char[])}.
2824      *
2825      * @param   data   the character array.
2826      * @return  a {@code String} that contains the characters of the
2827      *          character array.
2828      */
2829     public static String copyValueOf(char data[]) {
2830         return new String(data);
2831     }
2832 
2833     /**
2834      * Returns the string representation of the {@code boolean} argument.
2835      *
2836      * @param   b   a {@code boolean}.
2837      * @return  if the argument is {@code true}, a string equal to
2838      *          {@code "true"} is returned; otherwise, a string equal to
2839      *          {@code "false"} is returned.
2840      */
2841     public static String valueOf(boolean b) {
2842         return b ? "true" : "false";
2843     }
2844 
2845     /**
2846      * Returns the string representation of the {@code char}
2847      * argument.
2848      *
2849      * @param   c   a {@code char}.
2850      * @return  a string of length {@code 1} containing
2851      *          as its single character the argument {@code c}.
2852      */
2853     public static String valueOf(char c) {
2854         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2855             return new String(StringLatin1.toBytes(c), LATIN1);
2856         }
2857         return new String(StringUTF16.toBytes(c), UTF16);
2858     }
2859 
2860     /**
2861      * Returns the string representation of the {@code int} argument.
2862      * <p>
2863      * The representation is exactly the one returned by the
2864      * {@code Integer.toString} method of one argument.
2865      *
2866      * @param   i   an {@code int}.
2867      * @return  a string representation of the {@code int} argument.
2868      * @see     java.lang.Integer#toString(int, int)
2869      */
2870     public static String valueOf(int i) {
2871         return Integer.toString(i);
2872     }
2873 
2874     /**
2875      * Returns the string representation of the {@code long} argument.
2876      * <p>
2877      * The representation is exactly the one returned by the
2878      * {@code Long.toString} method of one argument.
2879      *
2880      * @param   l   a {@code long}.
2881      * @return  a string representation of the {@code long} argument.
2882      * @see     java.lang.Long#toString(long)
2883      */
2884     public static String valueOf(long l) {
2885         return Long.toString(l);
2886     }
2887 
2888     /**
2889      * Returns the string representation of the {@code float} argument.
2890      * <p>
2891      * The representation is exactly the one returned by the
2892      * {@code Float.toString} method of one argument.
2893      *
2894      * @param   f   a {@code float}.
2895      * @return  a string representation of the {@code float} argument.
2896      * @see     java.lang.Float#toString(float)
2897      */
2898     public static String valueOf(float f) {
2899         return Float.toString(f);
2900     }
2901 
2902     /**
2903      * Returns the string representation of the {@code double} argument.
2904      * <p>
2905      * The representation is exactly the one returned by the
2906      * {@code Double.toString} method of one argument.
2907      *
2908      * @param   d   a {@code double}.
2909      * @return  a  string representation of the {@code double} argument.
2910      * @see     java.lang.Double#toString(double)
2911      */
2912     public static String valueOf(double d) {
2913         return Double.toString(d);
2914     }
2915 
2916     /**
2917      * Returns a canonical representation for the string object.
2918      * <p>
2919      * A pool of strings, initially empty, is maintained privately by the
2920      * class {@code String}.
2921      * <p>
2922      * When the intern method is invoked, if the pool already contains a
2923      * string equal to this {@code String} object as determined by
2924      * the {@link #equals(Object)} method, then the string from the pool is
2925      * returned. Otherwise, this {@code String} object is added to the
2926      * pool and a reference to this {@code String} object is returned.
2927      * <p>
2928      * It follows that for any two strings {@code s} and {@code t},
2929      * {@code s.intern() == t.intern()} is {@code true}
2930      * if and only if {@code s.equals(t)} is {@code true}.
2931      * <p>
2932      * All literal strings and string-valued constant expressions are
2933      * interned. String literals are defined in section 3.10.5 of the
2934      * <cite>The Java&trade; Language Specification</cite>.
2935      *
2936      * @return  a string that has the same contents as this string, but is
2937      *          guaranteed to be from a pool of unique strings.
2938      * @jls 3.10.5 String Literals
2939      */
2940     public native String intern();
2941 
2942     ////////////////////////////////////////////////////////////////
2943 
2944     /**
2945      * Copy character bytes from this string into dst starting at dstBegin.
2946      * This method doesn't perform any range checking.
2947      *
2948      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2949      * coders are different, and dst is big enough (range check)
2950      *
2951      * @param dstBegin  the char index, not offset of byte[]
2952      * @param coder     the coder of dst[]
2953      */
2954     void getBytes(byte dst[], int dstBegin, byte coder) {
2955         if (coder() == coder) {
2956             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2957         } else {    // this.coder == LATIN && coder == UTF16
2958             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2959         }
2960     }
2961 
2962     /*
2963      * Package private constructor. Trailing Void argument is there for
2964      * disambiguating it against other (public) constructors.
2965      *
2966      * Stores the char[] value into a byte[] that each byte represents
2967      * the8 low-order bits of the corresponding character, if the char[]
2968      * contains only latin1 character. Or a byte[] that stores all
2969      * characters in their byte sequences defined by the {@code StringUTF16}.
2970      */
2971     String(char[] value, int off, int len, Void sig) {
2972         if (len == 0) {
2973             this.value = "".value;
2974             this.coder = "".coder;
2975             return;
2976         }
2977         if (COMPACT_STRINGS) {
2978             byte[] val = StringUTF16.compress(value, off, len);
2979             if (val != null) {
2980                 this.value = val;
2981                 this.coder = LATIN1;
2982                 return;
2983             }
2984         }
2985         this.coder = UTF16;
2986         this.value = StringUTF16.toBytes(value, off, len);
2987     }
2988 
2989     /*
2990      * Package private constructor. Trailing Void argument is there for
2991      * disambiguating it against other (public) constructors.
2992      */
2993     String(AbstractStringBuilder asb, Void sig) {
2994         byte[] val = asb.getValue();
2995         int length = asb.length();
2996         if (asb.isLatin1()) {
2997             this.coder = LATIN1;
2998             this.value = Arrays.copyOfRange(val, 0, length);
2999         } else {
3000             if (COMPACT_STRINGS) {
3001                 byte[] buf = StringUTF16.compress(val, 0, length);
3002                 if (buf != null) {
3003                     this.coder = LATIN1;
3004                     this.value = buf;
3005                     return;
3006                 }
3007             }
3008             this.coder = UTF16;
3009             this.value = Arrays.copyOfRange(val, 0, length << 1);
3010         }
3011     }
3012 
3013    /*
3014     * Package private constructor which shares value array for speed.
3015     */
3016     String(byte[] value, byte coder) {
3017         this.value = value;
3018         this.coder = coder;
3019     }
3020 
3021     byte coder() {
3022         return COMPACT_STRINGS ? coder : UTF16;
3023     }
3024 
3025     byte[] value() {
3026         return value;
3027     }
3028 
3029     private boolean isLatin1() {
3030         return COMPACT_STRINGS && coder == LATIN1;
3031     }
3032 
3033     @Native static final byte LATIN1 = 0;
3034     @Native static final byte UTF16  = 1;
3035 
3036     /*
3037      * StringIndexOutOfBoundsException  if {@code index} is
3038      * negative or greater than or equal to {@code length}.
3039      */
3040     static void checkIndex(int index, int length) {
3041         if (index < 0 || index >= length) {
3042             throw new StringIndexOutOfBoundsException("index " + index +
3043                                                       ",length " + length);
3044         }
3045     }
3046 
3047     /*
3048      * StringIndexOutOfBoundsException  if {@code offset}
3049      * is negative or greater than {@code length}.
3050      */
3051     static void checkOffset(int offset, int length) {
3052         if (offset < 0 || offset > length) {
3053             throw new StringIndexOutOfBoundsException("offset " + offset +
3054                                                       ",length " + length);
3055         }
3056     }
3057 
3058     /*
3059      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3060      * bounds.
3061      *
3062      * @throws  StringIndexOutOfBoundsException
3063      *          If {@code offset} is negative, {@code count} is negative,
3064      *          or {@code offset} is greater than {@code length - count}
3065      */
3066     static void checkBoundsOffCount(int offset, int count, int length) {
3067         if (offset < 0 || count < 0 || offset > length - count) {
3068             throw new StringIndexOutOfBoundsException(
3069                 "offset " + offset + ", count " + count + ", length " + length);
3070         }
3071     }
3072 
3073     /*
3074      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3075      * bounds.
3076      *
3077      * @throws  StringIndexOutOfBoundsException
3078      *          If {@code begin} is negative, {@code begin} is greater than
3079      *          {@code end}, or {@code end} is greater than {@code length}.
3080      */
3081     static void checkBoundsBeginEnd(int begin, int end, int length) {
3082         if (begin < 0 || begin > end || end > length) {
3083             throw new StringIndexOutOfBoundsException(
3084                 "begin " + begin + ", end " + end + ", length " + length);
3085         }
3086     }
3087 ++/
3088 }
3089