1 /*
2  * Hunt - A refined core library for D programming language.
3  *
4  * Copyright (C) 2018-2019 HuntLabs
5  *
6  * Website: https://www.huntlabs.net/
7  *
8  * Licensed under the Apache-2.0 License.
9  *
10  */
11 
12 module hunt.String;
13 
14 import hunt.Nullable;
15 import std.string;
16 
17         import std.stdio;
18 void testxxx() {
19     version ( unittest ) {
20         
21             writeln("test - unittestd");
22     } else {
23 
24             writeln("test-non-unittest");
25     }
26 }
27 
28 /**
29  * The {@code String} class represents character strings. All
30  * string literals in Java programs, such as {@code "abc"}, are
31  * implemented as instances of this class.
32  * <p>
33  * Strings are constant; their values cannot be changed after they
34  * are created. String buffers support mutable strings.
35  * Because String objects are immutable they can be shared. For example:
36  * <blockquote><pre>
37  *     String str = "abc";
38  * </pre></blockquote><p>
39  * is equivalent to:
40  * <blockquote><pre>
41  *     char data[] = {'a', 'b', 'c'};
42  *     String str = new String(data);
43  * </pre></blockquote><p>
44  * Here are some more examples of how strings can be used:
45  * <blockquote><pre>
46  *     System.out.println("abc");
47  *     String cde = "cde";
48  *     System.out.println("abc" + cde);
49  *     String c = "abc".substring(2,3);
50  *     String d = cde.substring(1, 2);
51  * </pre></blockquote>
52  * <p>
53  * The class {@code String} includes methods for examining
54  * individual characters of the sequence, for comparing strings, for
55  * searching strings, for extracting substrings, and for creating a
56  * copy of a string with all characters translated to uppercase or to
57  * lowercase. Case mapping is based on the Unicode Standard version
58  * specified by the {@link java.lang.Character Character} class.
59  * <p>
60  * The Java language provides special support for the string
61  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
62  * other objects to strings. For additional information on string
63  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
64  *
65  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
66  * or method in this class will cause a {@link NullPointerException} to be
67  * thrown.
68  *
69  * <p>A {@code String} represents a string in the UTF-16 format
70  * in which <em>supplementary characters</em> are represented by <em>surrogate
71  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
72  * Character Representations</a> in the {@code Character} class for
73  * more information).
74  * Index values refer to {@code char} code units, so a supplementary
75  * character uses two positions in a {@code String}.
76  * <p>The {@code String} class provides methods for dealing with
77  * Unicode code points (i.e., characters), in addition to those for
78  * dealing with Unicode code units (i.e., {@code char} values).
79  *
80  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
81  * into account.  The {@link java.text.Collator} class provides methods for
82  * finer-grain, locale-sensitive String comparison.
83  *
84  * @implNote The implementation of the string concatenation operator is left to
85  * the discretion of a Java compiler, as long as the compiler ultimately conforms
86  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
87  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
88  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
89  * implementation of string conversion is typically through the method {@code toString},
90  * defined by {@code Object} and inherited by all classes in Java.
91  *
92  * @author  Lee Boynton
93  * @author  Arthur van Hoff
94  * @author  Martin Buchholz
95  * @author  Ulf Zibis
96  * @see     java.lang.Object#toString()
97  * @see     java.lang.StringBuffer
98  * @see     java.lang.StringBuilder
99  * @see     java.nio.charset.Charset
100  * @jls     15.18.1 String Concatenation Operator +
101  */
102 
103 final class String : Nullable!string {
104 
105     this() {
106         super(null);
107     }
108 
109     this(string value) {
110         super(value);
111     }
112 
113 /++
114      /**
115      * The value is used for character storage.
116      *
117      * @implNote This field is trusted by the VM, and is a subject to
118      * constant folding if String instance is constant. Overwriting this
119      * field after construction will cause problems.
120      *
121      * Additionally, it is marked with {@link Stable} to trust the contents
122      * of the array. No other facility in JDK provides this functionality (yet).
123      * {@link Stable} is safe here, because value is never null.
124      */
125     @Stable
126     private final byte[] value;
127 
128     /**
129      * The identifier of the encoding used to encode the bytes in
130      * {@code value}. The supported values in this implementation are
131      *
132      * LATIN1
133      * UTF16
134      *
135      * @implNote This field is trusted by the VM, and is a subject to
136      * constant folding if String instance is constant. Overwriting this
137      * field after construction will cause problems.
138      */
139     private final byte coder;
140 
141     /** Cache the hash code for the string */
142     private int hash; // Default to 0
143 
144     /** use serialVersionUID from JDK 1.0.2 for interoperability */
145     private static final long serialVersionUID = -6849794470754667710L;
146 
147     /**
148      * If String compaction is disabled, the bytes in {@code value} are
149      * always encoded in UTF16.
150      *
151      * For methods with several possible implementation paths, when String
152      * compaction is disabled, only one code path is taken.
153      *
154      * The instance field value is generally opaque to optimizing JIT
155      * compilers. Therefore, in performance-sensitive place, an explicit
156      * check of the static boolean {@code COMPACT_STRINGS} is done first
157      * before checking the {@code coder} field since the static boolean
158      * {@code COMPACT_STRINGS} would be constant folded away by an
159      * optimizing JIT compiler. The idioms for these cases are as follows.
160      *
161      * For code such as:
162      *
163      *    if (coder == LATIN1) { ... }
164      *
165      * can be written more optimally as
166      *
167      *    if (coder() == LATIN1) { ... }
168      *
169      * or:
170      *
171      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
172      *
173      * An optimizing JIT compiler can fold the above conditional as:
174      *
175      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
176      *    COMPACT_STRINGS == false => if (false)           { ... }
177      *
178      * @implNote
179      * The actual value for this field is injected by JVM. The static
180      * initialization block is used to set the value here to communicate
181      * that this static final field is not statically foldable, and to
182      * avoid any possible circular dependency during vm initialization.
183      */
184     static final boolean COMPACT_STRINGS;
185 
186     static {
187         COMPACT_STRINGS = true;
188     }
189 
190     /**
191      * Class String is special cased within the Serialization Stream Protocol.
192      *
193      * A String instance is written into an ObjectOutputStream according to
194      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
195      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
196      */
197     private static final ObjectStreamField[] serialPersistentFields =
198         new ObjectStreamField[0];
199 
200     /**
201      * Initializes a newly created {@code String} object so that it represents
202      * an empty character sequence.  Note that use of this constructor is
203      * unnecessary since Strings are immutable.
204      */
205     String() {
206         this.value = "".value;
207         this.coder = "".coder;
208     }
209 
210     /**
211      * Initializes a newly created {@code String} object so that it represents
212      * the same sequence of characters as the argument; in other words, the
213      * newly created string is a copy of the argument string. Unless an
214      * explicit copy of {@code original} is needed, use of this constructor is
215      * unnecessary since Strings are immutable.
216      *
217      * @param  original
218      *         A {@code String}
219      */
220     @HotSpotIntrinsicCandidate
221     String(String original) {
222         this.value = original.value;
223         this.coder = original.coder;
224         this.hash = original.hash;
225     }
226 
227     /**
228      * Allocates a new {@code String} so that it represents the sequence of
229      * characters currently contained in the character array argument. The
230      * contents of the character array are copied; subsequent modification of
231      * the character array does not affect the newly created string.
232      *
233      * @param  value
234      *         The initial value of the string
235      */
236     String(char value[]) {
237         this(value, 0, value.length, null);
238     }
239 
240     /**
241      * Allocates a new {@code String} that contains characters from a subarray
242      * of the character array argument. The {@code offset} argument is the
243      * index of the first character of the subarray and the {@code count}
244      * argument specifies the length of the subarray. The contents of the
245      * subarray are copied; subsequent modification of the character array does
246      * not affect the newly created string.
247      *
248      * @param  value
249      *         Array that is the source of characters
250      *
251      * @param  offset
252      *         The initial offset
253      *
254      * @param  count
255      *         The length
256      *
257      * @throws  IndexOutOfBoundsException
258      *          If {@code offset} is negative, {@code count} is negative, or
259      *          {@code offset} is greater than {@code value.length - count}
260      */
261     String(char value[], int offset, int count) {
262         this(value, offset, count, rangeCheck(value, offset, count));
263     }
264 
265     private static Void rangeCheck(char[] value, int offset, int count) {
266         checkBoundsOffCount(offset, count, value.length);
267         return null;
268     }
269 
270     /**
271      * Allocates a new {@code String} that contains characters from a subarray
272      * of the <a href="Character.html#unicode">Unicode code point</a> array
273      * argument.  The {@code offset} argument is the index of the first code
274      * point of the subarray and the {@code count} argument specifies the
275      * length of the subarray.  The contents of the subarray are converted to
276      * {@code char}s; subsequent modification of the {@code int} array does not
277      * affect the newly created string.
278      *
279      * @param  codePoints
280      *         Array that is the source of Unicode code points
281      *
282      * @param  offset
283      *         The initial offset
284      *
285      * @param  count
286      *         The length
287      *
288      * @throws  IllegalArgumentException
289      *          If any invalid Unicode code point is found in {@code
290      *          codePoints}
291      *
292      * @throws  IndexOutOfBoundsException
293      *          If {@code offset} is negative, {@code count} is negative, or
294      *          {@code offset} is greater than {@code codePoints.length - count}
295      *
296      */
297     String(int[] codePoints, int offset, int count) {
298         checkBoundsOffCount(offset, count, codePoints.length);
299         if (count == 0) {
300             this.value = "".value;
301             this.coder = "".coder;
302             return;
303         }
304         if (COMPACT_STRINGS) {
305             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
306             if (val != null) {
307                 this.coder = LATIN1;
308                 this.value = val;
309                 return;
310             }
311         }
312         this.coder = UTF16;
313         this.value = StringUTF16.toBytes(codePoints, offset, count);
314     }
315 
316     /**
317      * Allocates a new {@code String} constructed from a subarray of an array
318      * of 8-bit integer values.
319      *
320      * <p> The {@code offset} argument is the index of the first byte of the
321      * subarray, and the {@code count} argument specifies the length of the
322      * subarray.
323      *
324      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
325      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
326      *
327      * @deprecated This method does not properly convert bytes into characters.
328      * As of JDK&nbsp;1.1, the preferred way to do this is via the
329      * {@code String} constructors that take a {@link
330      * java.nio.charset.Charset}, charset name, or that use the platform's
331      * default charset.
332      *
333      * @param  ascii
334      *         The bytes to be converted to characters
335      *
336      * @param  hibyte
337      *         The top 8 bits of each 16-bit Unicode code unit
338      *
339      * @param  offset
340      *         The initial offset
341      * @param  count
342      *         The length
343      *
344      * @throws  IndexOutOfBoundsException
345      *          If {@code offset} is negative, {@code count} is negative, or
346      *          {@code offset} is greater than {@code ascii.length - count}
347      *
348      * @see  #String(byte[], int)
349      * @see  #String(byte[], int, int, java.lang.String)
350      * @see  #String(byte[], int, int, java.nio.charset.Charset)
351      * @see  #String(byte[], int, int)
352      * @see  #String(byte[], java.lang.String)
353      * @see  #String(byte[], java.nio.charset.Charset)
354      * @see  #String(byte[])
355      */
356     @Deprecated(since="1.1")
357     String(byte ascii[], int hibyte, int offset, int count) {
358         checkBoundsOffCount(offset, count, ascii.length);
359         if (count == 0) {
360             this.value = "".value;
361             this.coder = "".coder;
362             return;
363         }
364         if (COMPACT_STRINGS && (byte)hibyte == 0) {
365             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
366             this.coder = LATIN1;
367         } else {
368             hibyte <<= 8;
369             byte[] val = StringUTF16.newBytesFor(count);
370             for (int i = 0; i < count; i++) {
371                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
372             }
373             this.value = val;
374             this.coder = UTF16;
375         }
376     }
377 
378     /**
379      * Allocates a new {@code String} containing characters constructed from
380      * an array of 8-bit integer values. Each character <i>c</i> in the
381      * resulting string is constructed from the corresponding component
382      * <i>b</i> in the byte array such that:
383      *
384      * <blockquote><pre>
385      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
386      *                         | (<b><i>b</i></b> &amp; 0xff))
387      * </pre></blockquote>
388      *
389      * @deprecated  This method does not properly convert bytes into
390      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
391      * {@code String} constructors that take a {@link
392      * java.nio.charset.Charset}, charset name, or that use the platform's
393      * default charset.
394      *
395      * @param  ascii
396      *         The bytes to be converted to characters
397      *
398      * @param  hibyte
399      *         The top 8 bits of each 16-bit Unicode code unit
400      *
401      * @see  #String(byte[], int, int, java.lang.String)
402      * @see  #String(byte[], int, int, java.nio.charset.Charset)
403      * @see  #String(byte[], int, int)
404      * @see  #String(byte[], java.lang.String)
405      * @see  #String(byte[], java.nio.charset.Charset)
406      * @see  #String(byte[])
407      */
408     @Deprecated(since="1.1")
409     String(byte ascii[], int hibyte) {
410         this(ascii, hibyte, 0, ascii.length);
411     }
412 
413     /**
414      * Constructs a new {@code String} by decoding the specified subarray of
415      * bytes using the specified charset.  The length of the new {@code String}
416      * is a function of the charset, and hence may not be equal to the length
417      * of the subarray.
418      *
419      * <p> The behavior of this constructor when the given bytes are not valid
420      * in the given charset is unspecified.  The {@link
421      * java.nio.charset.CharsetDecoder} class should be used when more control
422      * over the decoding process is required.
423      *
424      * @param  bytes
425      *         The bytes to be decoded into characters
426      *
427      * @param  offset
428      *         The index of the first byte to decode
429      *
430      * @param  length
431      *         The number of bytes to decode
432 
433      * @param  charsetName
434      *         The name of a supported {@linkplain java.nio.charset.Charset
435      *         charset}
436      *
437      * @throws  UnsupportedEncodingException
438      *          If the named charset is not supported
439      *
440      * @throws  IndexOutOfBoundsException
441      *          If {@code offset} is negative, {@code length} is negative, or
442      *          {@code offset} is greater than {@code bytes.length - length}
443      *
444      */
445     String(byte bytes[], int offset, int length, String charsetName)
446             throws UnsupportedEncodingException {
447         if (charsetName == null)
448             throw new NullPointerException("charsetName");
449         checkBoundsOffCount(offset, length, bytes.length);
450         StringCoding.Result ret =
451             StringCoding.decode(charsetName, bytes, offset, length);
452         this.value = ret.value;
453         this.coder = ret.coder;
454     }
455 
456     /**
457      * Constructs a new {@code String} by decoding the specified subarray of
458      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
459      * The length of the new {@code String} is a function of the charset, and
460      * hence may not be equal to the length of the subarray.
461      *
462      * <p> This method always replaces malformed-input and unmappable-character
463      * sequences with this charset's default replacement string.  The {@link
464      * java.nio.charset.CharsetDecoder} class should be used when more control
465      * over the decoding process is required.
466      *
467      * @param  bytes
468      *         The bytes to be decoded into characters
469      *
470      * @param  offset
471      *         The index of the first byte to decode
472      *
473      * @param  length
474      *         The number of bytes to decode
475      *
476      * @param  charset
477      *         The {@linkplain java.nio.charset.Charset charset} to be used to
478      *         decode the {@code bytes}
479      *
480      * @throws  IndexOutOfBoundsException
481      *          If {@code offset} is negative, {@code length} is negative, or
482      *          {@code offset} is greater than {@code bytes.length - length}
483      *
484      */
485     String(byte bytes[], int offset, int length, Charset charset) {
486         if (charset == null)
487             throw new NullPointerException("charset");
488         checkBoundsOffCount(offset, length, bytes.length);
489         StringCoding.Result ret =
490             StringCoding.decode(charset, bytes, offset, length);
491         this.value = ret.value;
492         this.coder = ret.coder;
493     }
494 
495     /**
496      * Constructs a new {@code String} by decoding the specified array of bytes
497      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
498      * length of the new {@code String} is a function of the charset, and hence
499      * may not be equal to the length of the byte array.
500      *
501      * <p> The behavior of this constructor when the given bytes are not valid
502      * in the given charset is unspecified.  The {@link
503      * java.nio.charset.CharsetDecoder} class should be used when more control
504      * over the decoding process is required.
505      *
506      * @param  bytes
507      *         The bytes to be decoded into characters
508      *
509      * @param  charsetName
510      *         The name of a supported {@linkplain java.nio.charset.Charset
511      *         charset}
512      *
513      * @throws  UnsupportedEncodingException
514      *          If the named charset is not supported
515      *
516      */
517     String(byte bytes[], String charsetName)
518             throws UnsupportedEncodingException {
519         this(bytes, 0, bytes.length, charsetName);
520     }
521 
522     /**
523      * Constructs a new {@code String} by decoding the specified array of
524      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
525      * The length of the new {@code String} is a function of the charset, and
526      * hence may not be equal to the length of the byte array.
527      *
528      * <p> This method always replaces malformed-input and unmappable-character
529      * sequences with this charset's default replacement string.  The {@link
530      * java.nio.charset.CharsetDecoder} class should be used when more control
531      * over the decoding process is required.
532      *
533      * @param  bytes
534      *         The bytes to be decoded into characters
535      *
536      * @param  charset
537      *         The {@linkplain java.nio.charset.Charset charset} to be used to
538      *         decode the {@code bytes}
539      *
540      */
541     String(byte bytes[], Charset charset) {
542         this(bytes, 0, bytes.length, charset);
543     }
544 
545     /**
546      * Constructs a new {@code String} by decoding the specified subarray of
547      * bytes using the platform's default charset.  The length of the new
548      * {@code String} is a function of the charset, and hence may not be equal
549      * to the length of the subarray.
550      *
551      * <p> The behavior of this constructor when the given bytes are not valid
552      * in the default charset is unspecified.  The {@link
553      * java.nio.charset.CharsetDecoder} class should be used when more control
554      * over the decoding process is required.
555      *
556      * @param  bytes
557      *         The bytes to be decoded into characters
558      *
559      * @param  offset
560      *         The index of the first byte to decode
561      *
562      * @param  length
563      *         The number of bytes to decode
564      *
565      * @throws  IndexOutOfBoundsException
566      *          If {@code offset} is negative, {@code length} is negative, or
567      *          {@code offset} is greater than {@code bytes.length - length}
568      *
569      */
570     String(byte bytes[], int offset, int length) {
571         checkBoundsOffCount(offset, length, bytes.length);
572         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
573         this.value = ret.value;
574         this.coder = ret.coder;
575     }
576 
577     /**
578      * Constructs a new {@code String} by decoding the specified array of bytes
579      * using the platform's default charset.  The length of the new {@code
580      * String} is a function of the charset, and hence may not be equal to the
581      * length of the byte array.
582      *
583      * <p> The behavior of this constructor when the given bytes are not valid
584      * in the default charset is unspecified.  The {@link
585      * java.nio.charset.CharsetDecoder} class should be used when more control
586      * over the decoding process is required.
587      *
588      * @param  bytes
589      *         The bytes to be decoded into characters
590      *
591      */
592     String(byte[] bytes) {
593         this(bytes, 0, bytes.length);
594     }
595 
596     /**
597      * Allocates a new string that contains the sequence of characters
598      * currently contained in the string buffer argument. The contents of the
599      * string buffer are copied; subsequent modification of the string buffer
600      * does not affect the newly created string.
601      *
602      * @param  buffer
603      *         A {@code StringBuffer}
604      */
605     String(StringBuffer buffer) {
606         this(buffer.toString());
607     }
608 
609     /**
610      * Allocates a new string that contains the sequence of characters
611      * currently contained in the string builder argument. The contents of the
612      * string builder are copied; subsequent modification of the string builder
613      * does not affect the newly created string.
614      *
615      * <p> This constructor is provided to ease migration to {@code
616      * StringBuilder}. Obtaining a string from a string builder via the {@code
617      * toString} method is likely to run faster and is generally preferred.
618      *
619      * @param   builder
620      *          A {@code StringBuilder}
621      *
622      */
623     String(StringBuilder builder) {
624         this(builder, null);
625     }
626 
627     /**
628      * Returns the length of this string.
629      * The length is equal to the number of <a href="Character.html#unicode">Unicode
630      * code units</a> in the string.
631      *
632      * @return  the length of the sequence of characters represented by this
633      *          object.
634      */
635     int length() {
636         return value.length >> coder();
637     }
638 
639     /**
640      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
641      *
642      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
643      * {@code false}
644      *
645      */
646     boolean isEmpty() {
647         return value.length == 0;
648     }
649 
650     /**
651      * Returns the {@code char} value at the
652      * specified index. An index ranges from {@code 0} to
653      * {@code length() - 1}. The first {@code char} value of the sequence
654      * is at index {@code 0}, the next at index {@code 1},
655      * and so on, as for array indexing.
656      *
657      * <p>If the {@code char} value specified by the index is a
658      * <a href="Character.html#unicode">surrogate</a>, the surrogate
659      * value is returned.
660      *
661      * @param      index   the index of the {@code char} value.
662      * @return     the {@code char} value at the specified index of this string.
663      *             The first {@code char} value is at index {@code 0}.
664      * @exception  IndexOutOfBoundsException  if the {@code index}
665      *             argument is negative or not less than the length of this
666      *             string.
667      */
668     char charAt(int index) {
669         if (isLatin1()) {
670             return StringLatin1.charAt(value, index);
671         } else {
672             return StringUTF16.charAt(value, index);
673         }
674     }
675 
676     /**
677      * Returns the character (Unicode code point) at the specified
678      * index. The index refers to {@code char} values
679      * (Unicode code units) and ranges from {@code 0} to
680      * {@link #length()}{@code  - 1}.
681      *
682      * <p> If the {@code char} value specified at the given index
683      * is in the high-surrogate range, the following index is less
684      * than the length of this {@code String}, and the
685      * {@code char} value at the following index is in the
686      * low-surrogate range, then the supplementary code point
687      * corresponding to this surrogate pair is returned. Otherwise,
688      * the {@code char} value at the given index is returned.
689      *
690      * @param      index the index to the {@code char} values
691      * @return     the code point value of the character at the
692      *             {@code index}
693      * @exception  IndexOutOfBoundsException  if the {@code index}
694      *             argument is negative or not less than the length of this
695      *             string.
696      */
697     int codePointAt(int index) {
698         if (isLatin1()) {
699             checkIndex(index, value.length);
700             return value[index] & 0xff;
701         }
702         int length = value.length >> 1;
703         checkIndex(index, length);
704         return StringUTF16.codePointAt(value, index, length);
705     }
706 
707     /**
708      * Returns the character (Unicode code point) before the specified
709      * index. The index refers to {@code char} values
710      * (Unicode code units) and ranges from {@code 1} to {@link
711      * CharSequence#length() length}.
712      *
713      * <p> If the {@code char} value at {@code (index - 1)}
714      * is in the low-surrogate range, {@code (index - 2)} is not
715      * negative, and the {@code char} value at {@code (index -
716      * 2)} is in the high-surrogate range, then the
717      * supplementary code point value of the surrogate pair is
718      * returned. If the {@code char} value at {@code index -
719      * 1} is an unpaired low-surrogate or a high-surrogate, the
720      * surrogate value is returned.
721      *
722      * @param     index the index following the code point that should be returned
723      * @return    the Unicode code point value before the given index.
724      * @exception IndexOutOfBoundsException if the {@code index}
725      *            argument is less than 1 or greater than the length
726      *            of this string.
727      */
728     int codePointBefore(int index) {
729         int i = index - 1;
730         if (i < 0 || i >= length()) {
731             throw new StringIndexOutOfBoundsException(index);
732         }
733         if (isLatin1()) {
734             return (value[i] & 0xff);
735         }
736         return StringUTF16.codePointBefore(value, index);
737     }
738 
739     /**
740      * Returns the number of Unicode code points in the specified text
741      * range of this {@code String}. The text range begins at the
742      * specified {@code beginIndex} and extends to the
743      * {@code char} at index {@code endIndex - 1}. Thus the
744      * length (in {@code char}s) of the text range is
745      * {@code endIndex-beginIndex}. Unpaired surrogates within
746      * the text range count as one code point each.
747      *
748      * @param beginIndex the index to the first {@code char} of
749      * the text range.
750      * @param endIndex the index after the last {@code char} of
751      * the text range.
752      * @return the number of Unicode code points in the specified text
753      * range
754      * @exception IndexOutOfBoundsException if the
755      * {@code beginIndex} is negative, or {@code endIndex}
756      * is larger than the length of this {@code String}, or
757      * {@code beginIndex} is larger than {@code endIndex}.
758      */
759     int codePointCount(int beginIndex, int endIndex) {
760         if (beginIndex < 0 || beginIndex > endIndex ||
761             endIndex > length()) {
762             throw new IndexOutOfBoundsException();
763         }
764         if (isLatin1()) {
765             return endIndex - beginIndex;
766         }
767         return StringUTF16.codePointCount(value, beginIndex, endIndex);
768     }
769 
770     /**
771      * Returns the index within this {@code String} that is
772      * offset from the given {@code index} by
773      * {@code codePointOffset} code points. Unpaired surrogates
774      * within the text range given by {@code index} and
775      * {@code codePointOffset} count as one code point each.
776      *
777      * @param index the index to be offset
778      * @param codePointOffset the offset in code points
779      * @return the index within this {@code String}
780      * @exception IndexOutOfBoundsException if {@code index}
781      *   is negative or larger then the length of this
782      *   {@code String}, or if {@code codePointOffset} is positive
783      *   and the substring starting with {@code index} has fewer
784      *   than {@code codePointOffset} code points,
785      *   or if {@code codePointOffset} is negative and the substring
786      *   before {@code index} has fewer than the absolute value
787      *   of {@code codePointOffset} code points.
788      */
789     int offsetByCodePoints(int index, int codePointOffset) {
790         if (index < 0 || index > length()) {
791             throw new IndexOutOfBoundsException();
792         }
793         return Character.offsetByCodePoints(this, index, codePointOffset);
794     }
795 
796     /**
797      * Copies characters from this string into the destination character
798      * array.
799      * <p>
800      * The first character to be copied is at index {@code srcBegin};
801      * the last character to be copied is at index {@code srcEnd-1}
802      * (thus the total number of characters to be copied is
803      * {@code srcEnd-srcBegin}). The characters are copied into the
804      * subarray of {@code dst} starting at index {@code dstBegin}
805      * and ending at index:
806      * <blockquote><pre>
807      *     dstBegin + (srcEnd-srcBegin) - 1
808      * </pre></blockquote>
809      *
810      * @param      srcBegin   index of the first character in the string
811      *                        to copy.
812      * @param      srcEnd     index after the last character in the string
813      *                        to copy.
814      * @param      dst        the destination array.
815      * @param      dstBegin   the start offset in the destination array.
816      * @exception IndexOutOfBoundsException If any of the following
817      *            is true:
818      *            <ul><li>{@code srcBegin} is negative.
819      *            <li>{@code srcBegin} is greater than {@code srcEnd}
820      *            <li>{@code srcEnd} is greater than the length of this
821      *                string
822      *            <li>{@code dstBegin} is negative
823      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
824      *                {@code dst.length}</ul>
825      */
826     void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
827         checkBoundsBeginEnd(srcBegin, srcEnd, length());
828         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
829         if (isLatin1()) {
830             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
831         } else {
832             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
833         }
834     }
835 
836     /**
837      * Copies characters from this string into the destination byte array. Each
838      * byte receives the 8 low-order bits of the corresponding character. The
839      * eight high-order bits of each character are not copied and do not
840      * participate in the transfer in any way.
841      *
842      * <p> The first character to be copied is at index {@code srcBegin}; the
843      * last character to be copied is at index {@code srcEnd-1}.  The total
844      * number of characters to be copied is {@code srcEnd-srcBegin}. The
845      * characters, converted to bytes, are copied into the subarray of {@code
846      * dst} starting at index {@code dstBegin} and ending at index:
847      *
848      * <blockquote><pre>
849      *     dstBegin + (srcEnd-srcBegin) - 1
850      * </pre></blockquote>
851      *
852      * @deprecated  This method does not properly convert characters into
853      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
854      * {@link #getBytes()} method, which uses the platform's default charset.
855      *
856      * @param  srcBegin
857      *         Index of the first character in the string to copy
858      *
859      * @param  srcEnd
860      *         Index after the last character in the string to copy
861      *
862      * @param  dst
863      *         The destination array
864      *
865      * @param  dstBegin
866      *         The start offset in the destination array
867      *
868      * @throws  IndexOutOfBoundsException
869      *          If any of the following is true:
870      *          <ul>
871      *            <li> {@code srcBegin} is negative
872      *            <li> {@code srcBegin} is greater than {@code srcEnd}
873      *            <li> {@code srcEnd} is greater than the length of this String
874      *            <li> {@code dstBegin} is negative
875      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
876      *                 dst.length}
877      *          </ul>
878      */
879     @Deprecated(since="1.1")
880     void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
881         checkBoundsBeginEnd(srcBegin, srcEnd, length());
882         Objects.requireNonNull(dst);
883         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
884         if (isLatin1()) {
885             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
886         } else {
887             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
888         }
889     }
890 
891     /**
892      * Encodes this {@code String} into a sequence of bytes using the named
893      * charset, storing the result into a new byte array.
894      *
895      * <p> The behavior of this method when this string cannot be encoded in
896      * the given charset is unspecified.  The {@link
897      * java.nio.charset.CharsetEncoder} class should be used when more control
898      * over the encoding process is required.
899      *
900      * @param  charsetName
901      *         The name of a supported {@linkplain java.nio.charset.Charset
902      *         charset}
903      *
904      * @return  The resultant byte array
905      *
906      * @throws  UnsupportedEncodingException
907      *          If the named charset is not supported
908      *
909      */
910     byte[] getBytes(String charsetName)
911             throws UnsupportedEncodingException {
912         if (charsetName == null) throw new NullPointerException();
913         return StringCoding.encode(charsetName, coder(), value);
914     }
915 
916     /**
917      * Encodes this {@code String} into a sequence of bytes using the given
918      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
919      * new byte array.
920      *
921      * <p> This method always replaces malformed-input and unmappable-character
922      * sequences with this charset's default replacement byte array.  The
923      * {@link java.nio.charset.CharsetEncoder} class should be used when more
924      * control over the encoding process is required.
925      *
926      * @param  charset
927      *         The {@linkplain java.nio.charset.Charset} to be used to encode
928      *         the {@code String}
929      *
930      * @return  The resultant byte array
931      *
932      */
933     byte[] getBytes(Charset charset) {
934         if (charset == null) throw new NullPointerException();
935         return StringCoding.encode(charset, coder(), value);
936      }
937 ++/
938     /**
939      * Encodes this {@code String} into a sequence of bytes using the
940      * platform's default charset, storing the result into a new byte array.
941      *
942      * <p> The behavior of this method when this string cannot be encoded in
943      * the default charset is unspecified.  The {@link
944      * java.nio.charset.CharsetEncoder} class should be used when more control
945      * over the encoding process is required.
946      *
947      * @return  The resultant byte array
948      *
949      */
950     byte[] getBytes() {
951         // return StringCoding.encode(coder(), value);
952         return cast(byte[])_value.dup;
953     }
954 
955 /++
956     /**
957      * Compares this string to the specified object.  The result is {@code
958      * true} if and only if the argument is not {@code null} and is a {@code
959      * String} object that represents the same sequence of characters as this
960      * object.
961      *
962      * <p>For finer-grained String comparison, refer to
963      * {@link java.text.Collator}.
964      *
965      * @param  anObject
966      *         The object to compare this {@code String} against
967      *
968      * @return  {@code true} if the given object represents a {@code String}
969      *          equivalent to this string, {@code false} otherwise
970      *
971      * @see  #compareTo(String)
972      * @see  #equalsIgnoreCase(String)
973      */
974     boolean equals(Object anObject) {
975         if (this == anObject) {
976             return true;
977         }
978         if (anObject instanceof String) {
979             String aString = (String)anObject;
980             if (coder() == aString.coder()) {
981                 return isLatin1() ? StringLatin1.equals(value, aString.value)
982                                   : StringUTF16.equals(value, aString.value);
983             }
984         }
985         return false;
986     }
987 
988     /**
989      * Compares this string to the specified {@code StringBuffer}.  The result
990      * is {@code true} if and only if this {@code String} represents the same
991      * sequence of characters as the specified {@code StringBuffer}. This method
992      * synchronizes on the {@code StringBuffer}.
993      *
994      * <p>For finer-grained String comparison, refer to
995      * {@link java.text.Collator}.
996      *
997      * @param  sb
998      *         The {@code StringBuffer} to compare this {@code String} against
999      *
1000      * @return  {@code true} if this {@code String} represents the same
1001      *          sequence of characters as the specified {@code StringBuffer},
1002      *          {@code false} otherwise
1003      *
1004      */
1005     boolean contentEquals(StringBuffer sb) {
1006         return contentEquals((CharSequence)sb);
1007     }
1008 
1009     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1010         int len = length();
1011         if (len != sb.length()) {
1012             return false;
1013         }
1014         byte v1[] = value;
1015         byte v2[] = sb.getValue();
1016         if (coder() == sb.getCoder()) {
1017             int n = v1.length;
1018             for (int i = 0; i < n; i++) {
1019                 if (v1[i] != v2[i]) {
1020                     return false;
1021                 }
1022             }
1023         } else {
1024             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1025                 return false;
1026             }
1027             return StringUTF16.contentEquals(v1, v2, len);
1028         }
1029         return true;
1030     }
1031 
1032     /**
1033      * Compares this string to the specified {@code CharSequence}.  The
1034      * result is {@code true} if and only if this {@code String} represents the
1035      * same sequence of char values as the specified sequence. Note that if the
1036      * {@code CharSequence} is a {@code StringBuffer} then the method
1037      * synchronizes on it.
1038      *
1039      * <p>For finer-grained String comparison, refer to
1040      * {@link java.text.Collator}.
1041      *
1042      * @param  cs
1043      *         The sequence to compare this {@code String} against
1044      *
1045      * @return  {@code true} if this {@code String} represents the same
1046      *          sequence of char values as the specified sequence, {@code
1047      *          false} otherwise
1048      *
1049      */
1050     boolean contentEquals(CharSequence cs) {
1051         // Argument is a StringBuffer, StringBuilder
1052         if (cs instanceof AbstractStringBuilder) {
1053             if (cs instanceof StringBuffer) {
1054                 synchronized(cs) {
1055                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1056                 }
1057             } else {
1058                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1059             }
1060         }
1061         // Argument is a String
1062         if (cs instanceof String) {
1063             return equals(cs);
1064         }
1065         // Argument is a generic CharSequence
1066         int n = cs.length();
1067         if (n != length()) {
1068             return false;
1069         }
1070         byte[] val = this.value;
1071         if (isLatin1()) {
1072             for (int i = 0; i < n; i++) {
1073                 if ((val[i] & 0xff) != cs.charAt(i)) {
1074                     return false;
1075                 }
1076             }
1077         } else {
1078             if (!StringUTF16.contentEquals(val, cs, n)) {
1079                 return false;
1080             }
1081         }
1082         return true;
1083     }
1084 
1085     /**
1086      * Compares this {@code String} to another {@code String}, ignoring case
1087      * considerations.  Two strings are considered equal ignoring case if they
1088      * are of the same length and corresponding characters in the two strings
1089      * are equal ignoring case.
1090      *
1091      * <p> Two characters {@code c1} and {@code c2} are considered the same
1092      * ignoring case if at least one of the following is true:
1093      * <ul>
1094      *   <li> The two characters are the same (as compared by the
1095      *        {@code ==} operator)
1096      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1097      *        on each character produces the same result
1098      * </ul>
1099      *
1100      * <p>Note that this method does <em>not</em> take locale into account, and
1101      * will result in unsatisfactory results for certain locales.  The
1102      * {@link java.text.Collator} class provides locale-sensitive comparison.
1103      *
1104      * @param  anotherString
1105      *         The {@code String} to compare this {@code String} against
1106      *
1107      * @return  {@code true} if the argument is not {@code null} and it
1108      *          represents an equivalent {@code String} ignoring case; {@code
1109      *          false} otherwise
1110      *
1111      * @see  #equals(Object)
1112      */
1113     boolean equalsIgnoreCase(String anotherString) {
1114         return (this == anotherString) ? true
1115                 : (anotherString != null)
1116                 && (anotherString.length() == length())
1117                 && regionMatches(true, 0, anotherString, 0, length());
1118     }
1119 
1120     /**
1121      * Compares two strings lexicographically.
1122      * The comparison is based on the Unicode value of each character in
1123      * the strings. The character sequence represented by this
1124      * {@code String} object is compared lexicographically to the
1125      * character sequence represented by the argument string. The result is
1126      * a negative integer if this {@code String} object
1127      * lexicographically precedes the argument string. The result is a
1128      * positive integer if this {@code String} object lexicographically
1129      * follows the argument string. The result is zero if the strings
1130      * are equal; {@code compareTo} returns {@code 0} exactly when
1131      * the {@link #equals(Object)} method would return {@code true}.
1132      * <p>
1133      * This is the definition of lexicographic ordering. If two strings are
1134      * different, then either they have different characters at some index
1135      * that is a valid index for both strings, or their lengths are different,
1136      * or both. If they have different characters at one or more index
1137      * positions, let <i>k</i> be the smallest such index; then the string
1138      * whose character at position <i>k</i> has the smaller value, as
1139      * determined by using the {@code <} operator, lexicographically precedes the
1140      * other string. In this case, {@code compareTo} returns the
1141      * difference of the two character values at position {@code k} in
1142      * the two string -- that is, the value:
1143      * <blockquote><pre>
1144      * this.charAt(k)-anotherString.charAt(k)
1145      * </pre></blockquote>
1146      * If there is no index position at which they differ, then the shorter
1147      * string lexicographically precedes the longer string. In this case,
1148      * {@code compareTo} returns the difference of the lengths of the
1149      * strings -- that is, the value:
1150      * <blockquote><pre>
1151      * this.length()-anotherString.length()
1152      * </pre></blockquote>
1153      *
1154      * <p>For finer-grained String comparison, refer to
1155      * {@link java.text.Collator}.
1156      *
1157      * @param   anotherString   the {@code String} to be compared.
1158      * @return  the value {@code 0} if the argument string is equal to
1159      *          this string; a value less than {@code 0} if this string
1160      *          is lexicographically less than the string argument; and a
1161      *          value greater than {@code 0} if this string is
1162      *          lexicographically greater than the string argument.
1163      */
1164     int compareTo(String anotherString) {
1165         byte v1[] = value;
1166         byte v2[] = anotherString.value;
1167         if (coder() == anotherString.coder()) {
1168             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1169                               : StringUTF16.compareTo(v1, v2);
1170         }
1171         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1172                           : StringUTF16.compareToLatin1(v1, v2);
1173      }
1174 
1175     /**
1176      * A Comparator that orders {@code String} objects as by
1177      * {@code compareToIgnoreCase}. This comparator is serializable.
1178      * <p>
1179      * Note that this Comparator does <em>not</em> take locale into account,
1180      * and will result in an unsatisfactory ordering for certain locales.
1181      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1182      *
1183      * @see     java.text.Collator
1184      */
1185     static final Comparator<String> CASE_INSENSITIVE_ORDER
1186                                          = new CaseInsensitiveComparator();
1187     private static class CaseInsensitiveComparator
1188             implements Comparator<String>, java.io.Serializable {
1189         // use serialVersionUID from JDK 1.2.2 for interoperability
1190         private static final long serialVersionUID = 8575799808933029326L;
1191 
1192         int compare(String s1, String s2) {
1193             byte v1[] = s1.value;
1194             byte v2[] = s2.value;
1195             if (s1.coder() == s2.coder()) {
1196                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1197                                      : StringUTF16.compareToCI(v1, v2);
1198             }
1199             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1200                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1201         }
1202 
1203         /** Replaces the de-serialized object. */
1204         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1205     }
1206 
1207     /**
1208      * Compares two strings lexicographically, ignoring case
1209      * differences. This method returns an integer whose sign is that of
1210      * calling {@code compareTo} with normalized versions of the strings
1211      * where case differences have been eliminated by calling
1212      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1213      * each character.
1214      * <p>
1215      * Note that this method does <em>not</em> take locale into account,
1216      * and will result in an unsatisfactory ordering for certain locales.
1217      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1218      *
1219      * @param   str   the {@code String} to be compared.
1220      * @return  a negative integer, zero, or a positive integer as the
1221      *          specified String is greater than, equal to, or less
1222      *          than this String, ignoring case considerations.
1223      * @see     java.text.Collator
1224      */
1225     int compareToIgnoreCase(String str) {
1226         return CASE_INSENSITIVE_ORDER.compare(this, str);
1227     }
1228 
1229     /**
1230      * Tests if two string regions are equal.
1231      * <p>
1232      * A substring of this {@code String} object is compared to a substring
1233      * of the argument other. The result is true if these substrings
1234      * represent identical character sequences. The substring of this
1235      * {@code String} object to be compared begins at index {@code toffset}
1236      * and has length {@code len}. The substring of other to be compared
1237      * begins at index {@code ooffset} and has length {@code len}. The
1238      * result is {@code false} if and only if at least one of the following
1239      * is true:
1240      * <ul><li>{@code toffset} is negative.
1241      * <li>{@code ooffset} is negative.
1242      * <li>{@code toffset+len} is greater than the length of this
1243      * {@code String} object.
1244      * <li>{@code ooffset+len} is greater than the length of the other
1245      * argument.
1246      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1247      * such that:
1248      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1249      * <i>k</i>{@code )}
1250      * </ul>
1251      *
1252      * <p>Note that this method does <em>not</em> take locale into account.  The
1253      * {@link java.text.Collator} class provides locale-sensitive comparison.
1254      *
1255      * @param   toffset   the starting offset of the subregion in this string.
1256      * @param   other     the string argument.
1257      * @param   ooffset   the starting offset of the subregion in the string
1258      *                    argument.
1259      * @param   len       the number of characters to compare.
1260      * @return  {@code true} if the specified subregion of this string
1261      *          exactly matches the specified subregion of the string argument;
1262      *          {@code false} otherwise.
1263      */
1264     boolean regionMatches(int toffset, String other, int ooffset, int len) {
1265         byte tv[] = value;
1266         byte ov[] = other.value;
1267         // Note: toffset, ooffset, or len might be near -1>>>1.
1268         if ((ooffset < 0) || (toffset < 0) ||
1269              (toffset > (long)length() - len) ||
1270              (ooffset > (long)other.length() - len)) {
1271             return false;
1272         }
1273         if (coder() == other.coder()) {
1274             if (!isLatin1() && (len > 0)) {
1275                 toffset = toffset << 1;
1276                 ooffset = ooffset << 1;
1277                 len = len << 1;
1278             }
1279             while (len-- > 0) {
1280                 if (tv[toffset++] != ov[ooffset++]) {
1281                     return false;
1282                 }
1283             }
1284         } else {
1285             if (coder() == LATIN1) {
1286                 while (len-- > 0) {
1287                     if (StringLatin1.getChar(tv, toffset++) !=
1288                         StringUTF16.getChar(ov, ooffset++)) {
1289                         return false;
1290                     }
1291                 }
1292             } else {
1293                 while (len-- > 0) {
1294                     if (StringUTF16.getChar(tv, toffset++) !=
1295                         StringLatin1.getChar(ov, ooffset++)) {
1296                         return false;
1297                     }
1298                 }
1299             }
1300         }
1301         return true;
1302     }
1303 
1304     /**
1305      * Tests if two string regions are equal.
1306      * <p>
1307      * A substring of this {@code String} object is compared to a substring
1308      * of the argument {@code other}. The result is {@code true} if these
1309      * substrings represent character sequences that are the same, ignoring
1310      * case if and only if {@code ignoreCase} is true. The substring of
1311      * this {@code String} object to be compared begins at index
1312      * {@code toffset} and has length {@code len}. The substring of
1313      * {@code other} to be compared begins at index {@code ooffset} and
1314      * has length {@code len}. The result is {@code false} if and only if
1315      * at least one of the following is true:
1316      * <ul><li>{@code toffset} is negative.
1317      * <li>{@code ooffset} is negative.
1318      * <li>{@code toffset+len} is greater than the length of this
1319      * {@code String} object.
1320      * <li>{@code ooffset+len} is greater than the length of the other
1321      * argument.
1322      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1323      * integer <i>k</i> less than {@code len} such that:
1324      * <blockquote><pre>
1325      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1326      * </pre></blockquote>
1327      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1328      * integer <i>k</i> less than {@code len} such that:
1329      * <blockquote><pre>
1330      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1331      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1332      * </pre></blockquote>
1333      * </ul>
1334      *
1335      * <p>Note that this method does <em>not</em> take locale into account,
1336      * and will result in unsatisfactory results for certain locales when
1337      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1338      * provides locale-sensitive comparison.
1339      *
1340      * @param   ignoreCase   if {@code true}, ignore case when comparing
1341      *                       characters.
1342      * @param   toffset      the starting offset of the subregion in this
1343      *                       string.
1344      * @param   other        the string argument.
1345      * @param   ooffset      the starting offset of the subregion in the string
1346      *                       argument.
1347      * @param   len          the number of characters to compare.
1348      * @return  {@code true} if the specified subregion of this string
1349      *          matches the specified subregion of the string argument;
1350      *          {@code false} otherwise. Whether the matching is exact
1351      *          or case insensitive depends on the {@code ignoreCase}
1352      *          argument.
1353      */
1354     boolean regionMatches(boolean ignoreCase, int toffset,
1355             String other, int ooffset, int len) {
1356         if (!ignoreCase) {
1357             return regionMatches(toffset, other, ooffset, len);
1358         }
1359         // Note: toffset, ooffset, or len might be near -1>>>1.
1360         if ((ooffset < 0) || (toffset < 0)
1361                 || (toffset > (long)length() - len)
1362                 || (ooffset > (long)other.length() - len)) {
1363             return false;
1364         }
1365         byte tv[] = value;
1366         byte ov[] = other.value;
1367         if (coder() == other.coder()) {
1368             return isLatin1()
1369               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1370               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1371         }
1372         return isLatin1()
1373               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1374               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1375     }
1376 
1377     /**
1378      * Tests if the substring of this string beginning at the
1379      * specified index starts with the specified prefix.
1380      *
1381      * @param   prefix    the prefix.
1382      * @param   toffset   where to begin looking in this string.
1383      * @return  {@code true} if the character sequence represented by the
1384      *          argument is a prefix of the substring of this object starting
1385      *          at index {@code toffset}; {@code false} otherwise.
1386      *          The result is {@code false} if {@code toffset} is
1387      *          negative or greater than the length of this
1388      *          {@code String} object; otherwise the result is the same
1389      *          as the result of the expression
1390      *          <pre>
1391      *          this.substring(toffset).startsWith(prefix)
1392      *          </pre>
1393      */
1394     boolean startsWith(String prefix, int toffset) {
1395         // Note: toffset might be near -1>>>1.
1396         if (toffset < 0 || toffset > length() - prefix.length()) {
1397             return false;
1398         }
1399         byte ta[] = value;
1400         byte pa[] = prefix.value;
1401         int po = 0;
1402         int pc = pa.length;
1403         if (coder() == prefix.coder()) {
1404             int to = isLatin1() ? toffset : toffset << 1;
1405             while (po < pc) {
1406                 if (ta[to++] != pa[po++]) {
1407                     return false;
1408                 }
1409             }
1410         } else {
1411             if (isLatin1()) {  // && pcoder == UTF16
1412                 return false;
1413             }
1414             // coder == UTF16 && pcoder == LATIN1)
1415             while (po < pc) {
1416                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1417                     return false;
1418                }
1419             }
1420         }
1421         return true;
1422     }
1423 
1424     /**
1425      * Tests if this string starts with the specified prefix.
1426      *
1427      * @param   prefix   the prefix.
1428      * @return  {@code true} if the character sequence represented by the
1429      *          argument is a prefix of the character sequence represented by
1430      *          this string; {@code false} otherwise.
1431      *          Note also that {@code true} will be returned if the
1432      *          argument is an empty string or is equal to this
1433      *          {@code String} object as determined by the
1434      *          {@link #equals(Object)} method.
1435      */
1436     boolean startsWith(String prefix) {
1437         return startsWith(prefix, 0);
1438     }
1439 
1440     /**
1441      * Tests if this string ends with the specified suffix.
1442      *
1443      * @param   suffix   the suffix.
1444      * @return  {@code true} if the character sequence represented by the
1445      *          argument is a suffix of the character sequence represented by
1446      *          this object; {@code false} otherwise. Note that the
1447      *          result will be {@code true} if the argument is the
1448      *          empty string or is equal to this {@code String} object
1449      *          as determined by the {@link #equals(Object)} method.
1450      */
1451     boolean endsWith(String suffix) {
1452         return startsWith(suffix, length() - suffix.length());
1453     }
1454 
1455     /**
1456      * Returns a hash code for this string. The hash code for a
1457      * {@code String} object is computed as
1458      * <blockquote><pre>
1459      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1460      * </pre></blockquote>
1461      * using {@code int} arithmetic, where {@code s[i]} is the
1462      * <i>i</i>th character of the string, {@code n} is the length of
1463      * the string, and {@code ^} indicates exponentiation.
1464      * (The hash value of the empty string is zero.)
1465      *
1466      * @return  a hash code value for this object.
1467      */
1468     int hashCode() {
1469         int h = hash;
1470         if (h == 0 && value.length > 0) {
1471             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1472                                   : StringUTF16.hashCode(value);
1473         }
1474         return h;
1475     }
1476 
1477     /**
1478      * Returns the index within this string of the first occurrence of
1479      * the specified character. If a character with value
1480      * {@code ch} occurs in the character sequence represented by
1481      * this {@code String} object, then the index (in Unicode
1482      * code units) of the first such occurrence is returned. For
1483      * values of {@code ch} in the range from 0 to 0xFFFF
1484      * (inclusive), this is the smallest value <i>k</i> such that:
1485      * <blockquote><pre>
1486      * this.charAt(<i>k</i>) == ch
1487      * </pre></blockquote>
1488      * is true. For other values of {@code ch}, it is the
1489      * smallest value <i>k</i> such that:
1490      * <blockquote><pre>
1491      * this.codePointAt(<i>k</i>) == ch
1492      * </pre></blockquote>
1493      * is true. In either case, if no such character occurs in this
1494      * string, then {@code -1} is returned.
1495      *
1496      * @param   ch   a character (Unicode code point).
1497      * @return  the index of the first occurrence of the character in the
1498      *          character sequence represented by this object, or
1499      *          {@code -1} if the character does not occur.
1500      */
1501     int indexOf(int ch) {
1502         return indexOf(ch, 0);
1503     }
1504 
1505     /**
1506      * Returns the index within this string of the first occurrence of the
1507      * specified character, starting the search at the specified index.
1508      * <p>
1509      * If a character with value {@code ch} occurs in the
1510      * character sequence represented by this {@code String}
1511      * object at an index no smaller than {@code fromIndex}, then
1512      * the index of the first such occurrence is returned. For values
1513      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1514      * this is the smallest value <i>k</i> such that:
1515      * <blockquote><pre>
1516      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1517      * </pre></blockquote>
1518      * is true. For other values of {@code ch}, it is the
1519      * smallest value <i>k</i> such that:
1520      * <blockquote><pre>
1521      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1522      * </pre></blockquote>
1523      * is true. In either case, if no such character occurs in this
1524      * string at or after position {@code fromIndex}, then
1525      * {@code -1} is returned.
1526      *
1527      * <p>
1528      * There is no restriction on the value of {@code fromIndex}. If it
1529      * is negative, it has the same effect as if it were zero: this entire
1530      * string may be searched. If it is greater than the length of this
1531      * string, it has the same effect as if it were equal to the length of
1532      * this string: {@code -1} is returned.
1533      *
1534      * <p>All indices are specified in {@code char} values
1535      * (Unicode code units).
1536      *
1537      * @param   ch          a character (Unicode code point).
1538      * @param   fromIndex   the index to start the search from.
1539      * @return  the index of the first occurrence of the character in the
1540      *          character sequence represented by this object that is greater
1541      *          than or equal to {@code fromIndex}, or {@code -1}
1542      *          if the character does not occur.
1543      */
1544     int indexOf(int ch, int fromIndex) {
1545         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1546                           : StringUTF16.indexOf(value, ch, fromIndex);
1547     }
1548 
1549     /**
1550      * Returns the index within this string of the last occurrence of
1551      * the specified character. For values of {@code ch} in the
1552      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1553      * units) returned is the largest value <i>k</i> such that:
1554      * <blockquote><pre>
1555      * this.charAt(<i>k</i>) == ch
1556      * </pre></blockquote>
1557      * is true. For other values of {@code ch}, it is the
1558      * largest value <i>k</i> such that:
1559      * <blockquote><pre>
1560      * this.codePointAt(<i>k</i>) == ch
1561      * </pre></blockquote>
1562      * is true.  In either case, if no such character occurs in this
1563      * string, then {@code -1} is returned.  The
1564      * {@code String} is searched backwards starting at the last
1565      * character.
1566      *
1567      * @param   ch   a character (Unicode code point).
1568      * @return  the index of the last occurrence of the character in the
1569      *          character sequence represented by this object, or
1570      *          {@code -1} if the character does not occur.
1571      */
1572     int lastIndexOf(int ch) {
1573         return lastIndexOf(ch, length() - 1);
1574     }
1575 
1576     /**
1577      * Returns the index within this string of the last occurrence of
1578      * the specified character, searching backward starting at the
1579      * specified index. For values of {@code ch} in the range
1580      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1581      * value <i>k</i> such that:
1582      * <blockquote><pre>
1583      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1584      * </pre></blockquote>
1585      * is true. For other values of {@code ch}, it is the
1586      * largest value <i>k</i> such that:
1587      * <blockquote><pre>
1588      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1589      * </pre></blockquote>
1590      * is true. In either case, if no such character occurs in this
1591      * string at or before position {@code fromIndex}, then
1592      * {@code -1} is returned.
1593      *
1594      * <p>All indices are specified in {@code char} values
1595      * (Unicode code units).
1596      *
1597      * @param   ch          a character (Unicode code point).
1598      * @param   fromIndex   the index to start the search from. There is no
1599      *          restriction on the value of {@code fromIndex}. If it is
1600      *          greater than or equal to the length of this string, it has
1601      *          the same effect as if it were equal to one less than the
1602      *          length of this string: this entire string may be searched.
1603      *          If it is negative, it has the same effect as if it were -1:
1604      *          -1 is returned.
1605      * @return  the index of the last occurrence of the character in the
1606      *          character sequence represented by this object that is less
1607      *          than or equal to {@code fromIndex}, or {@code -1}
1608      *          if the character does not occur before that point.
1609      */
1610     int lastIndexOf(int ch, int fromIndex) {
1611         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1612                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1613     }
1614 
1615     /**
1616      * Returns the index within this string of the first occurrence of the
1617      * specified substring.
1618      *
1619      * <p>The returned index is the smallest value {@code k} for which:
1620      * <pre>{@code
1621      * this.startsWith(str, k)
1622      * }</pre>
1623      * If no such value of {@code k} exists, then {@code -1} is returned.
1624      *
1625      * @param   str   the substring to search for.
1626      * @return  the index of the first occurrence of the specified substring,
1627      *          or {@code -1} if there is no such occurrence.
1628      */
1629     int indexOf(String str) {
1630         if (coder() == str.coder()) {
1631             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1632                               : StringUTF16.indexOf(value, str.value);
1633         }
1634         if (coder() == LATIN1) {  // str.coder == UTF16
1635             return -1;
1636         }
1637         return StringUTF16.indexOfLatin1(value, str.value);
1638     }
1639 
1640     /**
1641      * Returns the index within this string of the first occurrence of the
1642      * specified substring, starting at the specified index.
1643      *
1644      * <p>The returned index is the smallest value {@code k} for which:
1645      * <pre>{@code
1646      *     k >= Math.min(fromIndex, this.length()) &&
1647      *                   this.startsWith(str, k)
1648      * }</pre>
1649      * If no such value of {@code k} exists, then {@code -1} is returned.
1650      *
1651      * @param   str         the substring to search for.
1652      * @param   fromIndex   the index from which to start the search.
1653      * @return  the index of the first occurrence of the specified substring,
1654      *          starting at the specified index,
1655      *          or {@code -1} if there is no such occurrence.
1656      */
1657     int indexOf(String str, int fromIndex) {
1658         return indexOf(value, coder(), length(), str, fromIndex);
1659     }
1660 
1661     /**
1662      * Code shared by String and AbstractStringBuilder to do searches. The
1663      * source is the character array being searched, and the target
1664      * is the string being searched for.
1665      *
1666      * @param   src       the characters being searched.
1667      * @param   srcCoder  the coder of the source string.
1668      * @param   srcCount  length of the source string.
1669      * @param   tgtStr    the characters being searched for.
1670      * @param   fromIndex the index to begin searching from.
1671      */
1672     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1673                        String tgtStr, int fromIndex) {
1674         byte[] tgt    = tgtStr.value;
1675         byte tgtCoder = tgtStr.coder();
1676         int tgtCount  = tgtStr.length();
1677 
1678         if (fromIndex >= srcCount) {
1679             return (tgtCount == 0 ? srcCount : -1);
1680         }
1681         if (fromIndex < 0) {
1682             fromIndex = 0;
1683         }
1684         if (tgtCount == 0) {
1685             return fromIndex;
1686         }
1687         if (tgtCount > srcCount) {
1688             return -1;
1689         }
1690         if (srcCoder == tgtCoder) {
1691             return srcCoder == LATIN1
1692                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1693                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1694         }
1695         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1696             return -1;
1697         }
1698         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1699         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1700     }
1701 
1702     /**
1703      * Returns the index within this string of the last occurrence of the
1704      * specified substring.  The last occurrence of the empty string ""
1705      * is considered to occur at the index value {@code this.length()}.
1706      *
1707      * <p>The returned index is the largest value {@code k} for which:
1708      * <pre>{@code
1709      * this.startsWith(str, k)
1710      * }</pre>
1711      * If no such value of {@code k} exists, then {@code -1} is returned.
1712      *
1713      * @param   str   the substring to search for.
1714      * @return  the index of the last occurrence of the specified substring,
1715      *          or {@code -1} if there is no such occurrence.
1716      */
1717     int lastIndexOf(String str) {
1718         return lastIndexOf(str, length());
1719     }
1720 
1721     /**
1722      * Returns the index within this string of the last occurrence of the
1723      * specified substring, searching backward starting at the specified index.
1724      *
1725      * <p>The returned index is the largest value {@code k} for which:
1726      * <pre>{@code
1727      *     k <= Math.min(fromIndex, this.length()) &&
1728      *                   this.startsWith(str, k)
1729      * }</pre>
1730      * If no such value of {@code k} exists, then {@code -1} is returned.
1731      *
1732      * @param   str         the substring to search for.
1733      * @param   fromIndex   the index to start the search from.
1734      * @return  the index of the last occurrence of the specified substring,
1735      *          searching backward from the specified index,
1736      *          or {@code -1} if there is no such occurrence.
1737      */
1738     int lastIndexOf(String str, int fromIndex) {
1739         return lastIndexOf(value, coder(), length(), str, fromIndex);
1740     }
1741 
1742     /**
1743      * Code shared by String and AbstractStringBuilder to do searches. The
1744      * source is the character array being searched, and the target
1745      * is the string being searched for.
1746      *
1747      * @param   src         the characters being searched.
1748      * @param   srcCoder    coder handles the mapping between bytes/chars
1749      * @param   srcCount    count of the source string.
1750      * @param   tgt         the characters being searched for.
1751      * @param   fromIndex   the index to begin searching from.
1752      */
1753     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1754                            String tgtStr, int fromIndex) {
1755         byte[] tgt = tgtStr.value;
1756         byte tgtCoder = tgtStr.coder();
1757         int tgtCount = tgtStr.length();
1758         /*
1759          * Check arguments; return immediately where possible. For
1760          * consistency, don't check for null str.
1761          */
1762         int rightIndex = srcCount - tgtCount;
1763         if (fromIndex > rightIndex) {
1764             fromIndex = rightIndex;
1765         }
1766         if (fromIndex < 0) {
1767             return -1;
1768         }
1769         /* Empty string always matches. */
1770         if (tgtCount == 0) {
1771             return fromIndex;
1772         }
1773         if (srcCoder == tgtCoder) {
1774             return srcCoder == LATIN1
1775                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1776                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1777         }
1778         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1779             return -1;
1780         }
1781         // srcCoder == UTF16 && tgtCoder == LATIN1
1782         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1783     }
1784 
1785     /**
1786      * Returns a string that is a substring of this string. The
1787      * substring begins with the character at the specified index and
1788      * extends to the end of this string. <p>
1789      * Examples:
1790      * <blockquote><pre>
1791      * "unhappy".substring(2) returns "happy"
1792      * "Harbison".substring(3) returns "bison"
1793      * "emptiness".substring(9) returns "" (an empty string)
1794      * </pre></blockquote>
1795      *
1796      * @param      beginIndex   the beginning index, inclusive.
1797      * @return     the specified substring.
1798      * @exception  IndexOutOfBoundsException  if
1799      *             {@code beginIndex} is negative or larger than the
1800      *             length of this {@code String} object.
1801      */
1802     String substring(int beginIndex) {
1803         if (beginIndex < 0) {
1804             throw new StringIndexOutOfBoundsException(beginIndex);
1805         }
1806         int subLen = length() - beginIndex;
1807         if (subLen < 0) {
1808             throw new StringIndexOutOfBoundsException(subLen);
1809         }
1810         if (beginIndex == 0) {
1811             return this;
1812         }
1813         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1814                           : StringUTF16.newString(value, beginIndex, subLen);
1815     }
1816 
1817     /**
1818      * Returns a string that is a substring of this string. The
1819      * substring begins at the specified {@code beginIndex} and
1820      * extends to the character at index {@code endIndex - 1}.
1821      * Thus the length of the substring is {@code endIndex-beginIndex}.
1822      * <p>
1823      * Examples:
1824      * <blockquote><pre>
1825      * "hamburger".substring(4, 8) returns "urge"
1826      * "smiles".substring(1, 5) returns "mile"
1827      * </pre></blockquote>
1828      *
1829      * @param      beginIndex   the beginning index, inclusive.
1830      * @param      endIndex     the ending index, exclusive.
1831      * @return     the specified substring.
1832      * @exception  IndexOutOfBoundsException  if the
1833      *             {@code beginIndex} is negative, or
1834      *             {@code endIndex} is larger than the length of
1835      *             this {@code String} object, or
1836      *             {@code beginIndex} is larger than
1837      *             {@code endIndex}.
1838      */
1839     String substring(int beginIndex, int endIndex) {
1840         int length = length();
1841         checkBoundsBeginEnd(beginIndex, endIndex, length);
1842         int subLen = endIndex - beginIndex;
1843         if (beginIndex == 0 && endIndex == length) {
1844             return this;
1845         }
1846         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1847                           : StringUTF16.newString(value, beginIndex, subLen);
1848     }
1849 
1850     /**
1851      * Returns a character sequence that is a subsequence of this sequence.
1852      *
1853      * <p> An invocation of this method of the form
1854      *
1855      * <blockquote><pre>
1856      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1857      *
1858      * behaves in exactly the same way as the invocation
1859      *
1860      * <blockquote><pre>
1861      * str.substring(begin,&nbsp;end)</pre></blockquote>
1862      *
1863      * @apiNote
1864      * This method is defined so that the {@code String} class can implement
1865      * the {@link CharSequence} interface.
1866      *
1867      * @param   beginIndex   the begin index, inclusive.
1868      * @param   endIndex     the end index, exclusive.
1869      * @return  the specified subsequence.
1870      *
1871      * @throws  IndexOutOfBoundsException
1872      *          if {@code beginIndex} or {@code endIndex} is negative,
1873      *          if {@code endIndex} is greater than {@code length()},
1874      *          or if {@code beginIndex} is greater than {@code endIndex}
1875      *
1876      * @spec JSR-51
1877      */
1878     CharSequence subSequence(int beginIndex, int endIndex) {
1879         return this.substring(beginIndex, endIndex);
1880     }
1881 
1882     /**
1883      * Concatenates the specified string to the end of this string.
1884      * <p>
1885      * If the length of the argument string is {@code 0}, then this
1886      * {@code String} object is returned. Otherwise, a
1887      * {@code String} object is returned that represents a character
1888      * sequence that is the concatenation of the character sequence
1889      * represented by this {@code String} object and the character
1890      * sequence represented by the argument string.<p>
1891      * Examples:
1892      * <blockquote><pre>
1893      * "cares".concat("s") returns "caress"
1894      * "to".concat("get").concat("her") returns "together"
1895      * </pre></blockquote>
1896      *
1897      * @param   str   the {@code String} that is concatenated to the end
1898      *                of this {@code String}.
1899      * @return  a string that represents the concatenation of this object's
1900      *          characters followed by the string argument's characters.
1901      */
1902     String concat(String str) {
1903         int olen = str.length();
1904         if (olen == 0) {
1905             return this;
1906         }
1907         if (coder() == str.coder()) {
1908             byte[] val = this.value;
1909             byte[] oval = str.value;
1910             int len = val.length + oval.length;
1911             byte[] buf = Arrays.copyOf(val, len);
1912             System.arraycopy(oval, 0, buf, val.length, oval.length);
1913             return new String(buf, coder);
1914         }
1915         int len = length();
1916         byte[] buf = StringUTF16.newBytesFor(len + olen);
1917         getBytes(buf, 0, UTF16);
1918         str.getBytes(buf, len, UTF16);
1919         return new String(buf, UTF16);
1920     }
1921 
1922     /**
1923      * Returns a string resulting from replacing all occurrences of
1924      * {@code oldChar} in this string with {@code newChar}.
1925      * <p>
1926      * If the character {@code oldChar} does not occur in the
1927      * character sequence represented by this {@code String} object,
1928      * then a reference to this {@code String} object is returned.
1929      * Otherwise, a {@code String} object is returned that
1930      * represents a character sequence identical to the character sequence
1931      * represented by this {@code String} object, except that every
1932      * occurrence of {@code oldChar} is replaced by an occurrence
1933      * of {@code newChar}.
1934      * <p>
1935      * Examples:
1936      * <blockquote><pre>
1937      * "mesquite in your cellar".replace('e', 'o')
1938      *         returns "mosquito in your collar"
1939      * "the war of baronets".replace('r', 'y')
1940      *         returns "the way of bayonets"
1941      * "sparring with a purple porpoise".replace('p', 't')
1942      *         returns "starring with a turtle tortoise"
1943      * "JonL".replace('q', 'x') returns "JonL" (no change)
1944      * </pre></blockquote>
1945      *
1946      * @param   oldChar   the old character.
1947      * @param   newChar   the new character.
1948      * @return  a string derived from this string by replacing every
1949      *          occurrence of {@code oldChar} with {@code newChar}.
1950      */
1951     String replace(char oldChar, char newChar) {
1952         if (oldChar != newChar) {
1953             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
1954                                     : StringUTF16.replace(value, oldChar, newChar);
1955             if (ret != null) {
1956                 return ret;
1957             }
1958         }
1959         return this;
1960     }
1961 
1962     /**
1963      * Tells whether or not this string matches the given <a
1964      * href="../util/regex/Pattern.html#sum">regular expression</a>.
1965      *
1966      * <p> An invocation of this method of the form
1967      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
1968      * same result as the expression
1969      *
1970      * <blockquote>
1971      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
1972      * matches(<i>regex</i>, <i>str</i>)}
1973      * </blockquote>
1974      *
1975      * @param   regex
1976      *          the regular expression to which this string is to be matched
1977      *
1978      * @return  {@code true} if, and only if, this string matches the
1979      *          given regular expression
1980      *
1981      * @throws  PatternSyntaxException
1982      *          if the regular expression's syntax is invalid
1983      *
1984      * @see java.util.regex.Pattern
1985      *
1986      * @spec JSR-51
1987      */
1988     boolean matches(String regex) {
1989         return Pattern.matches(regex, this);
1990     }
1991 
1992     /**
1993      * Returns true if and only if this string contains the specified
1994      * sequence of char values.
1995      *
1996      * @param s the sequence to search for
1997      * @return true if this string contains {@code s}, false otherwise
1998      */
1999     boolean contains(CharSequence s) {
2000         return indexOf(s.toString()) >= 0;
2001     }
2002 
2003     /**
2004      * Replaces the first substring of this string that matches the given <a
2005      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2006      * given replacement.
2007      *
2008      * <p> An invocation of this method of the form
2009      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2010      * yields exactly the same result as the expression
2011      *
2012      * <blockquote>
2013      * <code>
2014      * {@link java.util.regex.Pattern}.{@link
2015      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2016      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2017      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2018      * </code>
2019      * </blockquote>
2020      *
2021      *<p>
2022      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2023      * replacement string may cause the results to be different than if it were
2024      * being treated as a literal replacement string; see
2025      * {@link java.util.regex.Matcher#replaceFirst}.
2026      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2027      * meaning of these characters, if desired.
2028      *
2029      * @param   regex
2030      *          the regular expression to which this string is to be matched
2031      * @param   replacement
2032      *          the string to be substituted for the first match
2033      *
2034      * @return  The resulting {@code String}
2035      *
2036      * @throws  PatternSyntaxException
2037      *          if the regular expression's syntax is invalid
2038      *
2039      * @see java.util.regex.Pattern
2040      *
2041      * @spec JSR-51
2042      */
2043     String replaceFirst(String regex, String replacement) {
2044         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2045     }
2046 
2047     /**
2048      * Replaces each substring of this string that matches the given <a
2049      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2050      * given replacement.
2051      *
2052      * <p> An invocation of this method of the form
2053      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2054      * yields exactly the same result as the expression
2055      *
2056      * <blockquote>
2057      * <code>
2058      * {@link java.util.regex.Pattern}.{@link
2059      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2060      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2061      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2062      * </code>
2063      * </blockquote>
2064      *
2065      *<p>
2066      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2067      * replacement string may cause the results to be different than if it were
2068      * being treated as a literal replacement string; see
2069      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2070      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2071      * meaning of these characters, if desired.
2072      *
2073      * @param   regex
2074      *          the regular expression to which this string is to be matched
2075      * @param   replacement
2076      *          the string to be substituted for each match
2077      *
2078      * @return  The resulting {@code String}
2079      *
2080      * @throws  PatternSyntaxException
2081      *          if the regular expression's syntax is invalid
2082      *
2083      * @see java.util.regex.Pattern
2084      *
2085      * @spec JSR-51
2086      */
2087     String replaceAll(String regex, String replacement) {
2088         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2089     }
2090 
2091     /**
2092      * Replaces each substring of this string that matches the literal target
2093      * sequence with the specified literal replacement sequence. The
2094      * replacement proceeds from the beginning of the string to the end, for
2095      * example, replacing "aa" with "b" in the string "aaa" will result in
2096      * "ba" rather than "ab".
2097      *
2098      * @param  target The sequence of char values to be replaced
2099      * @param  replacement The replacement sequence of char values
2100      * @return  The resulting string
2101      */
2102     String replace(CharSequence target, CharSequence replacement) {
2103         String tgtStr = target.toString();
2104         String replStr = replacement.toString();
2105         int j = indexOf(tgtStr);
2106         if (j < 0) {
2107             return this;
2108         }
2109         int tgtLen = tgtStr.length();
2110         int tgtLen1 = Math.max(tgtLen, 1);
2111         int thisLen = length();
2112 
2113         int newLenHint = thisLen - tgtLen + replStr.length();
2114         if (newLenHint < 0) {
2115             throw new OutOfMemoryError();
2116         }
2117         StringBuilder sb = new StringBuilder(newLenHint);
2118         int i = 0;
2119         do {
2120             sb.append(this, i, j).append(replStr);
2121             i = j + tgtLen;
2122         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2123         return sb.append(this, i, thisLen).toString();
2124     }
2125 
2126     /**
2127      * Splits this string around matches of the given
2128      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2129      *
2130      * <p> The array returned by this method contains each substring of this
2131      * string that is terminated by another substring that matches the given
2132      * expression or is terminated by the end of the string.  The substrings in
2133      * the array are in the order in which they occur in this string.  If the
2134      * expression does not match any part of the input then the resulting array
2135      * has just one element, namely this string.
2136      *
2137      * <p> When there is a positive-width match at the beginning of this
2138      * string then an empty leading substring is included at the beginning
2139      * of the resulting array. A zero-width match at the beginning however
2140      * never produces such empty leading substring.
2141      *
2142      * <p> The {@code limit} parameter controls the number of times the
2143      * pattern is applied and therefore affects the length of the resulting
2144      * array.  If the limit <i>n</i> is greater than zero then the pattern
2145      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2146      * length will be no greater than <i>n</i>, and the array's last entry
2147      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2148      * is non-positive then the pattern will be applied as many times as
2149      * possible and the array can have any length.  If <i>n</i> is zero then
2150      * the pattern will be applied as many times as possible, the array can
2151      * have any length, and trailing empty strings will be discarded.
2152      *
2153      * <p> The string {@code "boo:and:foo"}, for example, yields the
2154      * following results with these parameters:
2155      *
2156      * <blockquote><table class="plain">
2157      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2158      * <thead>
2159      * <tr>
2160      *     <th scope="col">Regex</th>
2161      *     <th scope="col">Limit</th>
2162      *     <th scope="col">Result</th>
2163      * </tr>
2164      * </thead>
2165      * <tbody>
2166      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2167      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2168      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2169      * <tr><!-- : -->
2170      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2171      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2172      * <tr><!-- : -->
2173      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2174      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2175      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2176      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2177      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2178      * <tr><!-- o -->
2179      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2180      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2181      * <tr><!-- o -->
2182      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2183      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2184      * </tbody>
2185      * </table></blockquote>
2186      *
2187      * <p> An invocation of this method of the form
2188      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2189      * yields the same result as the expression
2190      *
2191      * <blockquote>
2192      * <code>
2193      * {@link java.util.regex.Pattern}.{@link
2194      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2195      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2196      * </code>
2197      * </blockquote>
2198      *
2199      *
2200      * @param  regex
2201      *         the delimiting regular expression
2202      *
2203      * @param  limit
2204      *         the result threshold, as described above
2205      *
2206      * @return  the array of strings computed by splitting this string
2207      *          around matches of the given regular expression
2208      *
2209      * @throws  PatternSyntaxException
2210      *          if the regular expression's syntax is invalid
2211      *
2212      * @see java.util.regex.Pattern
2213      *
2214      * @spec JSR-51
2215      */
2216     String[] split(String regex, int limit) {
2217         /* fastpath if the regex is a
2218          (1)one-char String and this character is not one of the
2219             RegEx's meta characters ".$|()[{^?*+\\", or
2220          (2)two-char String and the first char is the backslash and
2221             the second is not the ascii digit or ascii letter.
2222          */
2223         char ch = 0;
2224         if (((regex.length() == 1 &&
2225              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2226              (regex.length() == 2 &&
2227               regex.charAt(0) == '\\' &&
2228               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2229               ((ch-'a')|('z'-ch)) < 0 &&
2230               ((ch-'A')|('Z'-ch)) < 0)) &&
2231             (ch < Character.MIN_HIGH_SURROGATE ||
2232              ch > Character.MAX_LOW_SURROGATE))
2233         {
2234             int off = 0;
2235             int next = 0;
2236             boolean limited = limit > 0;
2237             ArrayList<String> list = new ArrayList<>();
2238             while ((next = indexOf(ch, off)) != -1) {
2239                 if (!limited || list.size() < limit - 1) {
2240                     list.add(substring(off, next));
2241                     off = next + 1;
2242                 } else {    // last one
2243                     //assert (list.size() == limit - 1);
2244                     int last = length();
2245                     list.add(substring(off, last));
2246                     off = last;
2247                     break;
2248                 }
2249             }
2250             // If no match was found, return this
2251             if (off == 0)
2252                 return new String[]{this};
2253 
2254             // Add remaining segment
2255             if (!limited || list.size() < limit)
2256                 list.add(substring(off, length()));
2257 
2258             // Construct result
2259             int resultSize = list.size();
2260             if (limit == 0) {
2261                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2262                     resultSize--;
2263                 }
2264             }
2265             String[] result = new String[resultSize];
2266             return list.subList(0, resultSize).toArray(result);
2267         }
2268         return Pattern.compile(regex).split(this, limit);
2269     }
2270 
2271     /**
2272      * Splits this string around matches of the given <a
2273      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2274      *
2275      * <p> This method works as if by invoking the two-argument {@link
2276      * #split(String, int) split} method with the given expression and a limit
2277      * argument of zero.  Trailing empty strings are therefore not included in
2278      * the resulting array.
2279      *
2280      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2281      * results with these expressions:
2282      *
2283      * <blockquote><table class="plain">
2284      * <caption style="display:none">Split examples showing regex and result</caption>
2285      * <thead>
2286      * <tr>
2287      *  <th scope="col">Regex</th>
2288      *  <th scope="col">Result</th>
2289      * </tr>
2290      * </thead>
2291      * <tbody>
2292      * <tr><th scope="row" style="text-weight:normal">:</th>
2293      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2294      * <tr><th scope="row" style="text-weight:normal">o</th>
2295      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2296      * </tbody>
2297      * </table></blockquote>
2298      *
2299      *
2300      * @param  regex
2301      *         the delimiting regular expression
2302      *
2303      * @return  the array of strings computed by splitting this string
2304      *          around matches of the given regular expression
2305      *
2306      * @throws  PatternSyntaxException
2307      *          if the regular expression's syntax is invalid
2308      *
2309      * @see java.util.regex.Pattern
2310      *
2311      * @spec JSR-51
2312      */
2313     String[] split(String regex) {
2314         return split(regex, 0);
2315     }
2316 
2317     /**
2318      * Returns a new String composed of copies of the
2319      * {@code CharSequence elements} joined together with a copy of
2320      * the specified {@code delimiter}.
2321      *
2322      * <blockquote>For example,
2323      * <pre>{@code
2324      *     String message = String.join("-", "Java", "is", "cool");
2325      *     // message returned is: "Java-is-cool"
2326      * }</pre></blockquote>
2327      *
2328      * Note that if an element is null, then {@code "null"} is added.
2329      *
2330      * @param  delimiter the delimiter that separates each element
2331      * @param  elements the elements to join together.
2332      *
2333      * @return a new {@code String} that is composed of the {@code elements}
2334      *         separated by the {@code delimiter}
2335      *
2336      * @throws NullPointerException If {@code delimiter} or {@code elements}
2337      *         is {@code null}
2338      *
2339      * @see java.util.StringJoiner
2340      */
2341     static String join(CharSequence delimiter, CharSequence... elements) {
2342         Objects.requireNonNull(delimiter);
2343         Objects.requireNonNull(elements);
2344         // Number of elements not likely worth Arrays.stream overhead.
2345         StringJoiner joiner = new StringJoiner(delimiter);
2346         for (CharSequence cs: elements) {
2347             joiner.add(cs);
2348         }
2349         return joiner.toString();
2350     }
2351 
2352     /**
2353      * Returns a new {@code String} composed of copies of the
2354      * {@code CharSequence elements} joined together with a copy of the
2355      * specified {@code delimiter}.
2356      *
2357      * <blockquote>For example,
2358      * <pre>{@code
2359      *     List<String> strings = List.of("Java", "is", "cool");
2360      *     String message = String.join(" ", strings);
2361      *     //message returned is: "Java is cool"
2362      *
2363      *     Set<String> strings =
2364      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2365      *     String message = String.join("-", strings);
2366      *     //message returned is: "Java-is-very-cool"
2367      * }</pre></blockquote>
2368      *
2369      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2370      *
2371      * @param  delimiter a sequence of characters that is used to separate each
2372      *         of the {@code elements} in the resulting {@code String}
2373      * @param  elements an {@code Iterable} that will have its {@code elements}
2374      *         joined together.
2375      *
2376      * @return a new {@code String} that is composed from the {@code elements}
2377      *         argument
2378      *
2379      * @throws NullPointerException If {@code delimiter} or {@code elements}
2380      *         is {@code null}
2381      *
2382      * @see    #join(CharSequence,CharSequence...)
2383      * @see    java.util.StringJoiner
2384      */
2385     static String join(CharSequence delimiter,
2386             Iterable<? extends CharSequence> elements) {
2387         Objects.requireNonNull(delimiter);
2388         Objects.requireNonNull(elements);
2389         StringJoiner joiner = new StringJoiner(delimiter);
2390         for (CharSequence cs: elements) {
2391             joiner.add(cs);
2392         }
2393         return joiner.toString();
2394     }
2395 
2396     /**
2397      * Converts all of the characters in this {@code String} to lower
2398      * case using the rules of the given {@code Locale}.  Case mapping is based
2399      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2400      * class. Since case mappings are not always 1:1 char mappings, the resulting
2401      * {@code String} may be a different length than the original {@code String}.
2402      * <p>
2403      * Examples of lowercase  mappings are in the following table:
2404      * <table class="plain">
2405      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2406      * <thead>
2407      * <tr>
2408      *   <th scope="col">Language Code of Locale</th>
2409      *   <th scope="col">Upper Case</th>
2410      *   <th scope="col">Lower Case</th>
2411      *   <th scope="col">Description</th>
2412      * </tr>
2413      * </thead>
2414      * <tbody>
2415      * <tr>
2416      *   <td>tr (Turkish)</td>
2417      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0130</th>
2418      *   <td>&#92;u0069</td>
2419      *   <td>capital letter I with dot above -&gt; small letter i</td>
2420      * </tr>
2421      * <tr>
2422      *   <td>tr (Turkish)</td>
2423      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0049</th>
2424      *   <td>&#92;u0131</td>
2425      *   <td>capital letter I -&gt; small letter dotless i </td>
2426      * </tr>
2427      * <tr>
2428      *   <td>(all)</td>
2429      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2430      *   <td>french fries</td>
2431      *   <td>lowercased all chars in String</td>
2432      * </tr>
2433      * <tr>
2434      *   <td>(all)</td>
2435      *   <th scope="row" style="font-weight:normal; text-align:left">
2436      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2437      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2438      *   <td>lowercased all chars in String</td>
2439      * </tr>
2440      * </tbody>
2441      * </table>
2442      *
2443      * @param locale use the case transformation rules for this locale
2444      * @return the {@code String}, converted to lowercase.
2445      * @see     java.lang.String#toLowerCase()
2446      * @see     java.lang.String#toUpperCase()
2447      * @see     java.lang.String#toUpperCase(Locale)
2448      */
2449     String toLowerCase(Locale locale) {
2450         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2451                           : StringUTF16.toLowerCase(this, value, locale);
2452     }
2453 ++/
2454     /**
2455      * Converts all of the characters in this {@code String} to lower
2456      * case using the rules of the default locale. This is equivalent to calling
2457      * {@code toLowerCase(Locale.getDefault())}.
2458      * <p>
2459      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2460      * results if used for strings that are intended to be interpreted locale
2461      * independently.
2462      * Examples are programming language identifiers, protocol keys, and HTML
2463      * tags.
2464      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2465      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2466      * LATIN SMALL LETTER DOTLESS I character.
2467      * To obtain correct results for locale insensitive strings, use
2468      * {@code toLowerCase(Locale.ROOT)}.
2469      *
2470      * @return  the {@code String}, converted to lowercase.
2471      * @see     java.lang.String#toLowerCase(Locale)
2472      */
2473     String toLowerCase() {
2474         return new String(this._value.toLower());
2475     }
2476 
2477 /++
2478     /**
2479      * Converts all of the characters in this {@code String} to upper
2480      * case using the rules of the given {@code Locale}. Case mapping is based
2481      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2482      * class. Since case mappings are not always 1:1 char mappings, the resulting
2483      * {@code String} may be a different length than the original {@code String}.
2484      * <p>
2485      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2486      *
2487      * <table class="plain">
2488      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2489      * <thead>
2490      * <tr>
2491      *   <th scope="col">Language Code of Locale</th>
2492      *   <th scope="col">Lower Case</th>
2493      *   <th scope="col">Upper Case</th>
2494      *   <th scope="col">Description</th>
2495      * </tr>
2496      * </thead>
2497      * <tbody>
2498      * <tr>
2499      *   <td>tr (Turkish)</td>
2500      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0069</th>
2501      *   <td>&#92;u0130</td>
2502      *   <td>small letter i -&gt; capital letter I with dot above</td>
2503      * </tr>
2504      * <tr>
2505      *   <td>tr (Turkish)</td>
2506      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0131</th>
2507      *   <td>&#92;u0049</td>
2508      *   <td>small letter dotless i -&gt; capital letter I</td>
2509      * </tr>
2510      * <tr>
2511      *   <td>(all)</td>
2512      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u00df</th>
2513      *   <td>&#92;u0053 &#92;u0053</td>
2514      *   <td>small letter sharp s -&gt; two letters: SS</td>
2515      * </tr>
2516      * <tr>
2517      *   <td>(all)</td>
2518      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2519      *   <td>FAHRVERGN&Uuml;GEN</td>
2520      *   <td></td>
2521      * </tr>
2522      * </tbody>
2523      * </table>
2524      * @param locale use the case transformation rules for this locale
2525      * @return the {@code String}, converted to uppercase.
2526      * @see     java.lang.String#toUpperCase()
2527      * @see     java.lang.String#toLowerCase()
2528      * @see     java.lang.String#toLowerCase(Locale)
2529      */
2530     String toUpperCase(Locale locale) {
2531         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2532                           : StringUTF16.toUpperCase(this, value, locale);
2533     }
2534 ++/
2535     /**
2536      * Converts all of the characters in this {@code String} to upper
2537      * case using the rules of the default locale. This method is equivalent to
2538      * {@code toUpperCase(Locale.getDefault())}.
2539      * <p>
2540      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2541      * results if used for strings that are intended to be interpreted locale
2542      * independently.
2543      * Examples are programming language identifiers, protocol keys, and HTML
2544      * tags.
2545      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2546      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2547      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2548      * To obtain correct results for locale insensitive strings, use
2549      * {@code toUpperCase(Locale.ROOT)}.
2550      *
2551      * @return  the {@code String}, converted to uppercase.
2552      * @see     java.lang.String#toUpperCase(Locale)
2553      */
2554     String toUpperCase() {
2555         return new String(this._value.toUpper());
2556     }
2557 
2558 /++
2559     /**
2560      * Returns a string whose value is this string, with any leading and trailing
2561      * whitespace removed.
2562      * <p>
2563      * If this {@code String} object represents an empty character
2564      * sequence, or the first and last characters of character sequence
2565      * represented by this {@code String} object both have codes
2566      * greater than {@code '\u005Cu0020'} (the space character), then a
2567      * reference to this {@code String} object is returned.
2568      * <p>
2569      * Otherwise, if there is no character with a code greater than
2570      * {@code '\u005Cu0020'} in the string, then a
2571      * {@code String} object representing an empty string is
2572      * returned.
2573      * <p>
2574      * Otherwise, let <i>k</i> be the index of the first character in the
2575      * string whose code is greater than {@code '\u005Cu0020'}, and let
2576      * <i>m</i> be the index of the last character in the string whose code
2577      * is greater than {@code '\u005Cu0020'}. A {@code String}
2578      * object is returned, representing the substring of this string that
2579      * begins with the character at index <i>k</i> and ends with the
2580      * character at index <i>m</i>-that is, the result of
2581      * {@code this.substring(k, m + 1)}.
2582      * <p>
2583      * This method may be used to trim whitespace (as defined above) from
2584      * the beginning and end of a string.
2585      *
2586      * @return  A string whose value is this string, with any leading and trailing white
2587      *          space removed, or this string if it has no leading or
2588      *          trailing white space.
2589      */
2590     String trim() {
2591         String ret = isLatin1() ? StringLatin1.trim(value)
2592                                 : StringUTF16.trim(value);
2593         return ret == null ? this : ret;
2594     }
2595 
2596     /**
2597      * This object (which is already a string!) is itself returned.
2598      *
2599      * @return  the string itself.
2600      */
2601     String toString() {
2602         return this;
2603     }
2604 
2605     /**
2606      * Returns a stream of {@code int} zero-extending the {@code char} values
2607      * from this sequence.  Any char which maps to a <a
2608      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2609      * point</a> is passed through uninterpreted.
2610      *
2611      * @return an IntStream of char values from this sequence
2612      */
2613     @Override
2614     IntStream chars() {
2615         return StreamSupport.intStream(
2616             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2617                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2618             false);
2619     }
2620 
2621 
2622     /**
2623      * Returns a stream of code point values from this sequence.  Any surrogate
2624      * pairs encountered in the sequence are combined as if by {@linkplain
2625      * Character#toCodePoint Character.toCodePoint} and the result is passed
2626      * to the stream. Any other code units, including ordinary BMP characters,
2627      * unpaired surrogates, and undefined code units, are zero-extended to
2628      * {@code int} values which are then passed to the stream.
2629      *
2630      * @return an IntStream of Unicode code points from this sequence
2631      */
2632     @Override
2633     IntStream codePoints() {
2634         return StreamSupport.intStream(
2635             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2636                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2637             false);
2638     }
2639 
2640     /**
2641      * Converts this string to a new character array.
2642      *
2643      * @return  a newly allocated character array whose length is the length
2644      *          of this string and whose contents are initialized to contain
2645      *          the character sequence represented by this string.
2646      */
2647     char[] toCharArray() {
2648         return isLatin1() ? StringLatin1.toChars(value)
2649                           : StringUTF16.toChars(value);
2650     }
2651 
2652     /**
2653      * Returns a formatted string using the specified format string and
2654      * arguments.
2655      *
2656      * <p> The locale always used is the one returned by {@link
2657      * java.util.Locale#getDefault(java.util.Locale.Category)
2658      * Locale.getDefault(Locale.Category)} with
2659      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2660      *
2661      * @param  format
2662      *         A <a href="../util/Formatter.html#syntax">format string</a>
2663      *
2664      * @param  args
2665      *         Arguments referenced by the format specifiers in the format
2666      *         string.  If there are more arguments than format specifiers, the
2667      *         extra arguments are ignored.  The number of arguments is
2668      *         variable and may be zero.  The maximum number of arguments is
2669      *         limited by the maximum dimension of a Java array as defined by
2670      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2671      *         The behaviour on a
2672      *         {@code null} argument depends on the <a
2673      *         href="../util/Formatter.html#syntax">conversion</a>.
2674      *
2675      * @throws  java.util.IllegalFormatException
2676      *          If a format string contains an illegal syntax, a format
2677      *          specifier that is incompatible with the given arguments,
2678      *          insufficient arguments given the format string, or other
2679      *          illegal conditions.  For specification of all possible
2680      *          formatting errors, see the <a
2681      *          href="../util/Formatter.html#detail">Details</a> section of the
2682      *          formatter class specification.
2683      *
2684      * @return  A formatted string
2685      *
2686      * @see  java.util.Formatter
2687      */
2688     static String format(String format, Object... args) {
2689         return new Formatter().format(format, args).toString();
2690     }
2691 
2692     /**
2693      * Returns a formatted string using the specified locale, format string,
2694      * and arguments.
2695      *
2696      * @param  l
2697      *         The {@linkplain java.util.Locale locale} to apply during
2698      *         formatting.  If {@code l} is {@code null} then no localization
2699      *         is applied.
2700      *
2701      * @param  format
2702      *         A <a href="../util/Formatter.html#syntax">format string</a>
2703      *
2704      * @param  args
2705      *         Arguments referenced by the format specifiers in the format
2706      *         string.  If there are more arguments than format specifiers, the
2707      *         extra arguments are ignored.  The number of arguments is
2708      *         variable and may be zero.  The maximum number of arguments is
2709      *         limited by the maximum dimension of a Java array as defined by
2710      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2711      *         The behaviour on a
2712      *         {@code null} argument depends on the
2713      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2714      *
2715      * @throws  java.util.IllegalFormatException
2716      *          If a format string contains an illegal syntax, a format
2717      *          specifier that is incompatible with the given arguments,
2718      *          insufficient arguments given the format string, or other
2719      *          illegal conditions.  For specification of all possible
2720      *          formatting errors, see the <a
2721      *          href="../util/Formatter.html#detail">Details</a> section of the
2722      *          formatter class specification
2723      *
2724      * @return  A formatted string
2725      *
2726      * @see  java.util.Formatter
2727      */
2728     static String format(Locale l, String format, Object... args) {
2729         return new Formatter(l).format(format, args).toString();
2730     }
2731 ++/
2732     /**
2733      * Returns the string representation of the {@code Object} argument.
2734      *
2735      * @param   obj   an {@code Object}.
2736      * @return  if the argument is {@code null}, then a string equal to
2737      *          {@code "null"}; otherwise, the value of
2738      *          {@code obj.toString()} is returned.
2739      * @see     java.lang.Object#toString()
2740      */
2741     static String valueOf(Object obj) {
2742         string str = (obj is null) ? "null" : obj.toString();
2743         return new String(str);
2744     }
2745 
2746 /++
2747     /**
2748      * Returns the string representation of the {@code char} array
2749      * argument. The contents of the character array are copied; subsequent
2750      * modification of the character array does not affect the returned
2751      * string.
2752      *
2753      * @param   data     the character array.
2754      * @return  a {@code String} that contains the characters of the
2755      *          character array.
2756      */
2757     static String valueOf(char data[]) {
2758         return new String(data);
2759     }
2760 
2761     /**
2762      * Returns the string representation of a specific subarray of the
2763      * {@code char} array argument.
2764      * <p>
2765      * The {@code offset} argument is the index of the first
2766      * character of the subarray. The {@code count} argument
2767      * specifies the length of the subarray. The contents of the subarray
2768      * are copied; subsequent modification of the character array does not
2769      * affect the returned string.
2770      *
2771      * @param   data     the character array.
2772      * @param   offset   initial offset of the subarray.
2773      * @param   count    length of the subarray.
2774      * @return  a {@code String} that contains the characters of the
2775      *          specified subarray of the character array.
2776      * @exception IndexOutOfBoundsException if {@code offset} is
2777      *          negative, or {@code count} is negative, or
2778      *          {@code offset+count} is larger than
2779      *          {@code data.length}.
2780      */
2781     static String valueOf(char data[], int offset, int count) {
2782         return new String(data, offset, count);
2783     }
2784 
2785     /**
2786      * Equivalent to {@link #valueOf(char[], int, int)}.
2787      *
2788      * @param   data     the character array.
2789      * @param   offset   initial offset of the subarray.
2790      * @param   count    length of the subarray.
2791      * @return  a {@code String} that contains the characters of the
2792      *          specified subarray of the character array.
2793      * @exception IndexOutOfBoundsException if {@code offset} is
2794      *          negative, or {@code count} is negative, or
2795      *          {@code offset+count} is larger than
2796      *          {@code data.length}.
2797      */
2798     static String copyValueOf(char data[], int offset, int count) {
2799         return new String(data, offset, count);
2800     }
2801 
2802     /**
2803      * Equivalent to {@link #valueOf(char[])}.
2804      *
2805      * @param   data   the character array.
2806      * @return  a {@code String} that contains the characters of the
2807      *          character array.
2808      */
2809     static String copyValueOf(char data[]) {
2810         return new String(data);
2811     }
2812 
2813     /**
2814      * Returns the string representation of the {@code boolean} argument.
2815      *
2816      * @param   b   a {@code boolean}.
2817      * @return  if the argument is {@code true}, a string equal to
2818      *          {@code "true"} is returned; otherwise, a string equal to
2819      *          {@code "false"} is returned.
2820      */
2821     static String valueOf(boolean b) {
2822         return b ? "true" : "false";
2823     }
2824 
2825     /**
2826      * Returns the string representation of the {@code char}
2827      * argument.
2828      *
2829      * @param   c   a {@code char}.
2830      * @return  a string of length {@code 1} containing
2831      *          as its single character the argument {@code c}.
2832      */
2833     static String valueOf(char c) {
2834         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2835             return new String(StringLatin1.toBytes(c), LATIN1);
2836         }
2837         return new String(StringUTF16.toBytes(c), UTF16);
2838     }
2839 
2840     /**
2841      * Returns the string representation of the {@code int} argument.
2842      * <p>
2843      * The representation is exactly the one returned by the
2844      * {@code Integer.toString} method of one argument.
2845      *
2846      * @param   i   an {@code int}.
2847      * @return  a string representation of the {@code int} argument.
2848      * @see     java.lang.Integer#toString(int, int)
2849      */
2850     static String valueOf(int i) {
2851         return Integer.toString(i);
2852     }
2853 
2854     /**
2855      * Returns the string representation of the {@code long} argument.
2856      * <p>
2857      * The representation is exactly the one returned by the
2858      * {@code Long.toString} method of one argument.
2859      *
2860      * @param   l   a {@code long}.
2861      * @return  a string representation of the {@code long} argument.
2862      * @see     java.lang.Long#toString(long)
2863      */
2864     static String valueOf(long l) {
2865         return Long.toString(l);
2866     }
2867 
2868     /**
2869      * Returns the string representation of the {@code float} argument.
2870      * <p>
2871      * The representation is exactly the one returned by the
2872      * {@code Float.toString} method of one argument.
2873      *
2874      * @param   f   a {@code float}.
2875      * @return  a string representation of the {@code float} argument.
2876      * @see     java.lang.Float#toString(float)
2877      */
2878     static String valueOf(float f) {
2879         return Float.toString(f);
2880     }
2881 
2882     /**
2883      * Returns the string representation of the {@code double} argument.
2884      * <p>
2885      * The representation is exactly the one returned by the
2886      * {@code Double.toString} method of one argument.
2887      *
2888      * @param   d   a {@code double}.
2889      * @return  a  string representation of the {@code double} argument.
2890      * @see     java.lang.Double#toString(double)
2891      */
2892     static String valueOf(double d) {
2893         return Double.toString(d);
2894     }
2895 
2896     /**
2897      * Returns a canonical representation for the string object.
2898      * <p>
2899      * A pool of strings, initially empty, is maintained privately by the
2900      * class {@code String}.
2901      * <p>
2902      * When the intern method is invoked, if the pool already contains a
2903      * string equal to this {@code String} object as determined by
2904      * the {@link #equals(Object)} method, then the string from the pool is
2905      * returned. Otherwise, this {@code String} object is added to the
2906      * pool and a reference to this {@code String} object is returned.
2907      * <p>
2908      * It follows that for any two strings {@code s} and {@code t},
2909      * {@code s.intern() == t.intern()} is {@code true}
2910      * if and only if {@code s.equals(t)} is {@code true}.
2911      * <p>
2912      * All literal strings and string-valued constant expressions are
2913      * interned. String literals are defined in section 3.10.5 of the
2914      * <cite>The Java&trade; Language Specification</cite>.
2915      *
2916      * @return  a string that has the same contents as this string, but is
2917      *          guaranteed to be from a pool of unique strings.
2918      * @jls 3.10.5 String Literals
2919      */
2920     native String intern();
2921 
2922     ////////////////////////////////////////////////////////////////
2923 
2924     /**
2925      * Copy character bytes from this string into dst starting at dstBegin.
2926      * This method doesn't perform any range checking.
2927      *
2928      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2929      * coders are different, and dst is big enough (range check)
2930      *
2931      * @param dstBegin  the char index, not offset of byte[]
2932      * @param coder     the coder of dst[]
2933      */
2934     void getBytes(byte dst[], int dstBegin, byte coder) {
2935         if (coder() == coder) {
2936             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2937         } else {    // this.coder == LATIN && coder == UTF16
2938             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2939         }
2940     }
2941 
2942     /*
2943      * Package private constructor. Trailing Void argument is there for
2944      * disambiguating it against other (public) constructors.
2945      *
2946      * Stores the char[] value into a byte[] that each byte represents
2947      * the8 low-order bits of the corresponding character, if the char[]
2948      * contains only latin1 character. Or a byte[] that stores all
2949      * characters in their byte sequences defined by the {@code StringUTF16}.
2950      */
2951     String(char[] value, int off, int len, Void sig) {
2952         if (len == 0) {
2953             this.value = "".value;
2954             this.coder = "".coder;
2955             return;
2956         }
2957         if (COMPACT_STRINGS) {
2958             byte[] val = StringUTF16.compress(value, off, len);
2959             if (val != null) {
2960                 this.value = val;
2961                 this.coder = LATIN1;
2962                 return;
2963             }
2964         }
2965         this.coder = UTF16;
2966         this.value = StringUTF16.toBytes(value, off, len);
2967     }
2968 
2969     /*
2970      * Package private constructor. Trailing Void argument is there for
2971      * disambiguating it against other (public) constructors.
2972      */
2973     String(AbstractStringBuilder asb, Void sig) {
2974         byte[] val = asb.getValue();
2975         int length = asb.length();
2976         if (asb.isLatin1()) {
2977             this.coder = LATIN1;
2978             this.value = Arrays.copyOfRange(val, 0, length);
2979         } else {
2980             if (COMPACT_STRINGS) {
2981                 byte[] buf = StringUTF16.compress(val, 0, length);
2982                 if (buf != null) {
2983                     this.coder = LATIN1;
2984                     this.value = buf;
2985                     return;
2986                 }
2987             }
2988             this.coder = UTF16;
2989             this.value = Arrays.copyOfRange(val, 0, length << 1);
2990         }
2991     }
2992 
2993    /*
2994     * Package private constructor which shares value array for speed.
2995     */
2996     String(byte[] value, byte coder) {
2997         this.value = value;
2998         this.coder = coder;
2999     }
3000 
3001     byte coder() {
3002         return COMPACT_STRINGS ? coder : UTF16;
3003     }
3004 
3005     byte[] value() {
3006         return value;
3007     }
3008 
3009     private boolean isLatin1() {
3010         return COMPACT_STRINGS && coder == LATIN1;
3011     }
3012 
3013     @Native static final byte LATIN1 = 0;
3014     @Native static final byte UTF16  = 1;
3015 
3016     /*
3017      * StringIndexOutOfBoundsException  if {@code index} is
3018      * negative or greater than or equal to {@code length}.
3019      */
3020     static void checkIndex(int index, int length) {
3021         if (index < 0 || index >= length) {
3022             throw new StringIndexOutOfBoundsException("index " + index +
3023                                                       ",length " + length);
3024         }
3025     }
3026 
3027     /*
3028      * StringIndexOutOfBoundsException  if {@code offset}
3029      * is negative or greater than {@code length}.
3030      */
3031     static void checkOffset(int offset, int length) {
3032         if (offset < 0 || offset > length) {
3033             throw new StringIndexOutOfBoundsException("offset " + offset +
3034                                                       ",length " + length);
3035         }
3036     }
3037 
3038     /*
3039      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3040      * bounds.
3041      *
3042      * @throws  StringIndexOutOfBoundsException
3043      *          If {@code offset} is negative, {@code count} is negative,
3044      *          or {@code offset} is greater than {@code length - count}
3045      */
3046     static void checkBoundsOffCount(int offset, int count, int length) {
3047         if (offset < 0 || count < 0 || offset > length - count) {
3048             throw new StringIndexOutOfBoundsException(
3049                 "offset " + offset + ", count " + count + ", length " + length);
3050         }
3051     }
3052 
3053     /*
3054      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3055      * bounds.
3056      *
3057      * @throws  StringIndexOutOfBoundsException
3058      *          If {@code begin} is negative, {@code begin} is greater than
3059      *          {@code end}, or {@code end} is greater than {@code length}.
3060      */
3061     static void checkBoundsBeginEnd(int begin, int end, int length) {
3062         if (begin < 0 || begin > end || end > length) {
3063             throw new StringIndexOutOfBoundsException(
3064                 "begin " + begin + ", end " + end + ", length " + length);
3065         }
3066     }
3067 ++/
3068 }
3069